Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_1_a9, author = {P. A. Shamanaev and O. S. Yazovtseva}, title = {The sufficient conditions of local asymptotic equivalence of nonlinear systems of ordinary differential equations and its application for investigation of stability respect to part of variables}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {102--115}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a9/} }
TY - JOUR AU - P. A. Shamanaev AU - O. S. Yazovtseva TI - The sufficient conditions of local asymptotic equivalence of nonlinear systems of ordinary differential equations and its application for investigation of stability respect to part of variables JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 102 EP - 115 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a9/ LA - ru ID - SVMO_2017_19_1_a9 ER -
%0 Journal Article %A P. A. Shamanaev %A O. S. Yazovtseva %T The sufficient conditions of local asymptotic equivalence of nonlinear systems of ordinary differential equations and its application for investigation of stability respect to part of variables %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 102-115 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a9/ %G ru %F SVMO_2017_19_1_a9
P. A. Shamanaev; O. S. Yazovtseva. The sufficient conditions of local asymptotic equivalence of nonlinear systems of ordinary differential equations and its application for investigation of stability respect to part of variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 102-115. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a9/
[1] A. M. Lyapunov, The general problem of the stability of motion, Gostekhizdat, Moscow, 1950, 471 pp. (In Russ.) | MR
[2] E. V. Voskresenskiy, Asymptotic methods: theory and applications, SVMO Publ., Saransk, 2000, 300 pp. (In Russ.)
[3] E. V. Voskresenskiy, Comparison methods in nonlinear analysys, Sarat. Univercity publ., Saransk, 1990, 224 pp. (In Russ.) | MR
[4] F. Brauer, “Asymptotic equivalence and asymptotic behavior of linear systems”, Michigan Math., 9:1 (1962), 33–43 | DOI | MR | Zbl
[5] N. Levinson, “The asymptotic behaviour of a system of linear differential equations”, Amer. J. Math., 63:1 (1946), 1–6 | DOI | MR
[6] A. Wintner, “Linear variation of constants”, Amer. J. Math., 68:1 (1946) | MR
[7] N. Onuchic, “Relationship among the solutions of two systems of ordinary differential equations”, Michigan Math. J., 10:1 (1963), 129–139 | MR | Zbl
[8] V. A. Yakubovich, “On asymptotic behavior of solutions of system of differential equations”, Mathem. sb., 28(70):1 (1951), 217–240 (In Russ.) | Zbl
[9] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemyitskiy, The theory of Lyapunov exponents and its applications to stability problems, Nauka Publ., Moscow, 1966, 576 pp. (In Russ.) | MR
[10] F. Riss, B. Sekefal'vi-Nad', Lectures on functional analysis, Mir Publ., Moscow, 1979, 580 pp. (In Russ.) | MR
[11] V. A. Trenogin, Functional analysis, Nauka Publ., Moscow, 1980, 249 pp. (In Russ.) | MR
[12] L. F. Nurislamova, I. M. Gubaydullin, “Kinetic model of gas-phase propane pyrolysis reaction based on a compact scheme”, Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 1:1 (2015), 185–193 (In Russ.)
[13] V. V. Rumyantsev, A. S. Oziraner, Stability and stabilization of motion with respect to a part of the variables, Nauka Publ., Moscow, 1987, 253 pp. (In Russ.) | MR
[14] V. V. Vorotnikov, “Problems and methods of investigation of stability and stabilization with respect to a part of the variables: research directions, results, features”, Avtomat. i telemekh., 3:1 (1993), 3–62 (In Russ.) | Zbl
[15] I. G. Malkin, Theory of stability of motion, Nauka Publ., Moscow, 1966, 533 pp. (In Russ.) | MR