Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_1_a7, author = {I. P. Ryazantseva}, title = {{\CYRS}ontinuous regularization analog of {Newton} method for m-accretive equations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {77--87}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a7/} }
TY - JOUR AU - I. P. Ryazantseva TI - Сontinuous regularization analog of Newton method for m-accretive equations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 77 EP - 87 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a7/ LA - ru ID - SVMO_2017_19_1_a7 ER -
I. P. Ryazantseva. Сontinuous regularization analog of Newton method for m-accretive equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 77-87. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a7/
[1] M. M. Vainberg, The variational method and the method of monotone operators in the theory of nonlinear equations, Nauka, Moscow, 1972, 416 pp. (In Russ.) | MR
[2] Ya. Alber, I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006, 410 pp. | MR | Zbl
[3] I. P. Ryazantseva, Electly chapters of theory monotone type operators, NGTU, Nizhny Novgorod, 2008, 272 pp. (In Russ.)
[4] Nguyen Buong, Nguyen Thi Hong Phuong, “Regularization methods for nonlinear ill-posed equations involving m-accretive mappings in Banach spaces”, Izv. vuzov. Matematika, 2 (2013), 67-74 (In Russ.)
[5] I. P. Ryazantseva, “Regularized continuous analog of Newton's method for monotone equations in Hilbert space”, Izv. vuzov. Matematika, 11 (2016), 53-67 (In Russ.) | Zbl
[6] V. A. Trenogin, Functional analysis, Nauka, Moscow, 1980, 495 pp. (In Russ.) | MR
[7] F. P. Vasil'ev, Methods for solving of extremal problems, Nauka, Moscow, 1981, 400 pp. (In Russ.) | MR