Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_1_a5, author = {E. D. Kurenkov}, title = {On existence of an endomorphism of $2$-torus with strictly invariant repeller}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {60--66}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a5/} }
TY - JOUR AU - E. D. Kurenkov TI - On existence of an endomorphism of $2$-torus with strictly invariant repeller JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 60 EP - 66 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a5/ LA - ru ID - SVMO_2017_19_1_a5 ER -
E. D. Kurenkov. On existence of an endomorphism of $2$-torus with strictly invariant repeller. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 60-66. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a5/
[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747-817 | DOI | MR | Zbl
[2] V. Z. Grines, “On topological conjugacy of diffeomorphisms of 2-manifold on one-dimensional orientable basic sets I”, Trudi Moskovskogo matematicheskogo obshestva, 32 (1975), 35–60 (In Russ.) | Zbl
[3] F. Przytycki, “Anosov endomorphisms”, Stud. Math., 58:3 (1976), 249–285 | DOI | MR | Zbl