Stabilization of singularly perturbed systems with a polynomial right-hand side
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the problem of stabilization of singularly perturbed systems of ordinary differential equations with homogeneous right-hand side in the form of polynomials of odd degree. The values of the perturbing parameter are supposed to be small. Sufficient conditions are obtained for stabilizing the zero solution of these systems to asymptotic stability by feedback control in the form of polynomials of the same degree as the right-hand side of the original system. It is assumed that only components of the vector of slow variables are subject for measurement and that control can only enter into the slow subsystem. For various cases, methods for constructing stabilizing controls are described. As a method of investigation, decomposition of a singularly perturbed system into a fast and slow subsystems of smaller dimension is applied. For stability analysis, the Lyapunov function method is used.
Mots-clés : singular perturbations
Keywords: small parameter, stabilization, homogenious form.
@article{SVMO_2017_19_1_a4,
     author = {M. V. Kozlov},
     title = {Stabilization of singularly perturbed systems with a polynomial right-hand side},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/}
}
TY  - JOUR
AU  - M. V. Kozlov
TI  - Stabilization of singularly perturbed systems with a polynomial right-hand side
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 51
EP  - 59
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/
LA  - ru
ID  - SVMO_2017_19_1_a4
ER  - 
%0 Journal Article
%A M. V. Kozlov
%T Stabilization of singularly perturbed systems with a polynomial right-hand side
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 51-59
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/
%G ru
%F SVMO_2017_19_1_a4
M. V. Kozlov. Stabilization of singularly perturbed systems with a polynomial right-hand side. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/

[1] Yan Zhang, D. Subbaram Naidu, Chenxiao Cai, and Yun Zou, “Singular Perturbations and Time Scales in Control Theories and Applications: an overview 2002-2012”, International Journal of Information and Systems Sciences, 9:1 (2014), 1–36 | MR

[2] A. I. Klimushev, N. N. Krasovskiy, “Uniform asymptotic stability of systems of differential Equations with a small parameter for the derivatives”, Prikladnaya matematika i mekhanika, 25:4 (1961), 680-690 (In Russ.) | Zbl

[3] C. Lobry, T. Sari, “Singular Perturbation Methods in Control Theory”, Controle non lineaire et applications, Travaux en cours, 64, no. 15, Hermann, Paris, 2005, 151-177 | Zbl

[4] Kh. K. Khalil, Nonlinear Systems, per. s angl. I. A. Makarova, Izd. 3-e, eds. A. L. Fradkov, In-t komp'yuternykh issled, Moskva, Izhevsk, 2009, 812 pp. (In Russ.)

[5] A. A. Kosov, “On the stability of singular homogeneous systems”, Materialy konf. “Lyapunovskie chteniya”, 2014, 16, IDSTU SO RAN, Irkutsk (In Russ.)

[6] A. A. Kosov, M. V. Kozlov, “Stabilization of a class of singular systems based on decomposition”, Informatsionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnykh sistem, 2016, no. 15, 77-84 (In Russ.)

[7] A. N. Tikhonov, “Systems of differential equations containing small parameters for derivatives”, Mat. sbornik, 31:3 (1952), 575-586 (In Russ.) | MR | Zbl

[8] A. A. Kosov, “On the stabilization of nonlinear controlled systems by homogeneous approximation”, Kachestvennye svoystva, asimptotika i stabilizatsiya nelineynykh dinamicheskikh sistem, mezhvuz. sb. nauch. tr, Izd-vo. Mordov. un-ta, Saransk, 2010, 74-81 (In Russ.)

[9] L. Rossier, “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Letters, 1992, no. 19, 467-473 | DOI | MR