Keywords: small parameter, stabilization, homogenious form.
@article{SVMO_2017_19_1_a4,
author = {M. V. Kozlov},
title = {Stabilization of singularly perturbed systems with a polynomial right-hand side},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {51--59},
year = {2017},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/}
}
M. V. Kozlov. Stabilization of singularly perturbed systems with a polynomial right-hand side. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a4/
[1] Yan Zhang, D. Subbaram Naidu, Chenxiao Cai, and Yun Zou, “Singular Perturbations and Time Scales in Control Theories and Applications: an overview 2002-2012”, International Journal of Information and Systems Sciences, 9:1 (2014), 1–36 | MR
[2] A. I. Klimushev, N. N. Krasovskiy, “Uniform asymptotic stability of systems of differential Equations with a small parameter for the derivatives”, Prikladnaya matematika i mekhanika, 25:4 (1961), 680-690 (In Russ.) | Zbl
[3] C. Lobry, T. Sari, “Singular Perturbation Methods in Control Theory”, Controle non lineaire et applications, Travaux en cours, 64, no. 15, Hermann, Paris, 2005, 151-177 | Zbl
[4] Kh. K. Khalil, Nonlinear Systems, per. s angl. I. A. Makarova, Izd. 3-e, eds. A. L. Fradkov, In-t komp'yuternykh issled, Moskva, Izhevsk, 2009, 812 pp. (In Russ.)
[5] A. A. Kosov, “On the stability of singular homogeneous systems”, Materialy konf. “Lyapunovskie chteniya”, 2014, 16, IDSTU SO RAN, Irkutsk (In Russ.)
[6] A. A. Kosov, M. V. Kozlov, “Stabilization of a class of singular systems based on decomposition”, Informatsionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnykh sistem, 2016, no. 15, 77-84 (In Russ.)
[7] A. N. Tikhonov, “Systems of differential equations containing small parameters for derivatives”, Mat. sbornik, 31:3 (1952), 575-586 (In Russ.) | MR | Zbl
[8] A. A. Kosov, “On the stabilization of nonlinear controlled systems by homogeneous approximation”, Kachestvennye svoystva, asimptotika i stabilizatsiya nelineynykh dinamicheskikh sistem, mezhvuz. sb. nauch. tr, Izd-vo. Mordov. un-ta, Saransk, 2010, 74-81 (In Russ.)
[9] L. Rossier, “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems Control Letters, 1992, no. 19, 467-473 | DOI | MR