Conjugacy of Smale-Vietoris diffeomorphisms using a conjugacy of endomorphisms
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 38-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper one gets the connection between a conjugacy of Smale-Vietoris diffeomorphisms and corresponding nonsingular circle endomorphisms conjugacy. To be precise, one gets the necessary condition for a conjugacy of the restriction of Smale-Vietoris diffeomorphism on basic manifolds. It is shown that a necessary condition for a conjugacy of the diffeomorphisms’ class under consideration is a conjugacy of corresponding circle endomorphisms. In the paper the technical theorem is also proved that contains some sufficient conditions of the existence of homeomorphism on basic manifolds that takes the orbits of Smale-Vietoris diffeomorphism to the orbits of another diffeomorphism with a commutative diagram of mappings. Together with the first result it gives the particular solution of the topological equivalence problem. Later on, the results of this paper may be useful to find invariants of conjugacy for diffeomorphisms of the class under consideration on basic manifolds.
Mots-clés : conjugacy, solenoid
Keywords: commutative diagram, topological equivalence, nonsingular endomorphism.
@article{SVMO_2017_19_1_a3,
     author = {N. V. Isaenkova and E. V. Zhuzhoma},
     title = {Conjugacy of {Smale-Vietoris} diffeomorphisms using a conjugacy of endomorphisms},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {38--50},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a3/}
}
TY  - JOUR
AU  - N. V. Isaenkova
AU  - E. V. Zhuzhoma
TI  - Conjugacy of Smale-Vietoris diffeomorphisms using a conjugacy of endomorphisms
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 38
EP  - 50
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a3/
LA  - ru
ID  - SVMO_2017_19_1_a3
ER  - 
%0 Journal Article
%A N. V. Isaenkova
%A E. V. Zhuzhoma
%T Conjugacy of Smale-Vietoris diffeomorphisms using a conjugacy of endomorphisms
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 38-50
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a3/
%G ru
%F SVMO_2017_19_1_a3
N. V. Isaenkova; E. V. Zhuzhoma. Conjugacy of Smale-Vietoris diffeomorphisms using a conjugacy of endomorphisms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 38-50. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a3/

[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747-817 | DOI | MR | Zbl

[2] R.F. Williams, “One-dimensional non-wandering sets”, Topology, 6 (1967), 473-487 | DOI | MR | Zbl

[3] R.F. Williams, “Classification of subshifts of finite type”, Annals of Math., 9 (1973), 120-153 | DOI | MR

[4] R.F. Williams, “Expanding attractors”, Publ. Math. IHES, 43 (1974), 169-203 | DOI | MR

[5] L. Block, “Diffeomorphisms obtained from diffeomorphisms”, Trans. Amer. Math. Soc., 214 (1975), 403-413 | DOI | MR | Zbl

[6] F. Farrell, L. Jones, “New attractors in hyperbolic dynamics”, Jour. Diff. Geom., 15 (1980), 107-133 | DOI | MR | Zbl

[7] J. Gibbons, “One-dimensional basic set in the three-sphere”, Trans. Amer. Math. Soc., 164 (1972), 163-178 | DOI | MR | Zbl

[8] V.Z. Grines, “On topological conjugacy of diffeomorphisms of two-dimensional manifold on one-dimensional orientable basic sets, 1”, Transactions of the Moscow mathematical society, 32 (1975), 35-60 (In Russ.) | Zbl

[9] V.Z. Grines, “On topological conjugacy of diffeomorphisms of two-dimensional manifold on one-dimensional orientable basic sets, 2”, Transactions of the Moscow mathematical society, 34 (1977), 243-252 (In Russ.) | Zbl

[10] V.Z. Grines, “On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers”, Sb. Math., 188:4 (1997), 537–569 (In Russ.) | DOI | MR | Zbl

[11] V.Z. Grines, E.V. Zhuzhoma, “On the topological classification of orientable attractors on an $n$-dimensional torus”, Russian Math. Surveys, 34:4 (1979), 185-186 (In Russ.) | MR

[12] S.Kh. Aranson, V.Z. Grines, “On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive dynamical systems)”, Math. USSR-Sb., 90:132:3 (1973), 372-402 (In Russ.) | Zbl

[13] V.Z. Grines, “On the topological equivalence of one-dimensional basic sets diffeomorphisms on two-dimensional manifolds”, Successes of mathematical Sciences, 180:6 (1974), 163-164 (In Russ.) | Zbl

[14] E.V. Zhuzhoma, N.V. Isaenkova, “Zero-dimensional solenoidal base sets”, Sb. Math., 202:3 (2011), 47-68 (In Russ.) | DOI | MR | Zbl

[15] C. Robinson, R. Williams, “Classification of expanding attractors: an example”, Topology, 15 (1976), 321-323 | DOI | MR | Zbl

[16] E.V. Zhuzhoma, N.V. Isaenkova N.V., “On classification of one-dimensional expanding attractors”, Math. Notes, 86:3 (2009), 360–370 (In Russ.) | DOI | MR | Zbl

[17] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. Journ. Math., 91 (1969), 175-199 | DOI | MR | Zbl

[18] Z. Nitecki, “Nonsingular endomorphisms of the circle”, Proc. Symp. Pure Math., 14 (1970), 203-220 | DOI | MR | Zbl

[19] E.V. Zhuzhoma, N.V. Isaenkova, “Classification of coverings of the circle”, Proc. Steklov Inst. Math., 3 (2012), 96-101 (In Russ.)