Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_1_a11, author = {V. N. Anisimov and V. L. Litvinov}, title = {Calculation of eigen frequencies of a rope moving in longitudinal direction}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {130--139}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a11/} }
TY - JOUR AU - V. N. Anisimov AU - V. L. Litvinov TI - Calculation of eigen frequencies of a rope moving in longitudinal direction JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 130 EP - 139 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a11/ LA - ru ID - SVMO_2017_19_1_a11 ER -
%0 Journal Article %A V. N. Anisimov %A V. L. Litvinov %T Calculation of eigen frequencies of a rope moving in longitudinal direction %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 130-139 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a11/ %G ru %F SVMO_2017_19_1_a11
V. N. Anisimov; V. L. Litvinov. Calculation of eigen frequencies of a rope moving in longitudinal direction. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 130-139. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a11/
[1] O. A. Goroshko, G. N. Savin, Introductionin mechanics of one dimensional deformable bodies of variable length, Naukova Dumka, Kiev, 1971, 270 pp. (In Russian)
[2] W. D. Zhu, Y. Zheng, “Theoretical and experimental investigation of elevator cable dynamics and control”, Trans. ASME. J. Vibr. And Acoust., 1 (2006), 66–78 | DOI
[3] V. N. Anisimov, “Longitudinal resonance oscillations of a viscoelastic rope of a load-lifting installation”, Izvestiya Samara Scientific Center, Russian Academy of Sciences, 18:4, no. 1 (2016), 128-133 (In Russian)
[4] Yu. P. Samarin, V. N. Anisimov, “Forced transverse vibrations of the flexible link at dispersal”, Izv. Vuzov. Mashinostroenie, 12 (1986), 17–21 (In Russian)
[5] A. I Vesnitskii, Vaves in systems with moving boundaries and loads, Fizmatlit, Moscow, 2001, 320 pp. (In Russian)
[6] V. S. Tikhonov, A. A. Abramov, “Transverse Vibrations of a Flexible String with Tame-Varying Length in Flow”, Vest. Mosk. Univ. Ser 1. Matematika, 5 (1993), 45-48 (In Russian) | Zbl
[7] A. A. Lezhnyva, “Bending vibration of beam of variable length”, Izv. Acad. Nauk USSR. Mechanic of solidstate, 1 (1970), 159–161 (In Russian)
[8] K. I. Ragulsky, “Questions of the Dynamics of Precision Tape-Driving Mechanisms”, The Dynamics of Machines, Nauka, Moscow, 1971, 169–177 (In Russian)
[9] V. I. Erofeev, D. A. Kolesov, E. E. Lisenkova, “Investigation of wave processes in a one-dimensional system lying on an elastic-inertial base, with a moving load”, Bulletin of Scientific and Technical Development, 6 (70) (2013), 18–29 (In Russian)
[10] Kh. S. Khosaev, “Mathematical description of the dynamic characteristics of the rope belt of a belt conveyor”, Tr. North-Caucasus. State. Technol. University, 8 (2001), 234–239 (In Russian)
[11] V. N. Anisimov, V. L. Litvinov, “Mathematical models of nonlinear longitudinal-cross oscillations of object with moving borders”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 19:2 (2015), 382-397 (In Russian) | DOI | Zbl
[12] V. N. Anisimov, V. L. Litvinov, Resonance properties of mechanical objects with moving boundaries: monograph, Samar. State. Tech. University, Samar, 2009, 131 pp. (In Russian)
[13] V. N. Anisimov, V. L. Litvinov, I. V. Korpen, “On a method of analytical soluthion of wave equation describing the oscillation system with moving boundaries”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 3(28) (2012), 145–151 (In Russian) | DOI | MR | Zbl
[14] V. N. Anisimov, V. L. Litvinov, “Investigation of resonance characteristics of mechanical objects with moving borders by application of the Kantorovich-Galerkin method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mt. Nauki, 1(18) (2009), 149–158 (In Russian) | DOI
[15] Hu Ding, Li-Qun Chen, “Galerkin methods for natural frequencies of high-speed axially moving beams”, J. Sound and Vibr., 17 (2010), 3484–3494 | DOI