Dynamic stability of elastic plate at jet flow
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 116-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of the dynamic system containing an elastic plate at a one-sided flow of ideal incompressible gas stream with a separation of jet according to Kirchhoff's scheme is offered. The behavior of elastic material is described by the nonlinear model considering both longitudinal and transversal deformations of an elastic plate. The solution of an aerohydrodynamic part of a problem is based on methods of the theory of functions of complex variable. The related system of the integro-differential equations with partial derivatives containing only unknown plate deformations functions is obtained. Basing on the building of the functional corresponding to this system of the equations the sufficient conditions for stability of system solutions are established. Definition of elastic body stability corresponds to the Lyapunov's concept of stability of dynamic systems.
Keywords: aerohydroelasticity, mathematical modeling, dynamic stability, elastic plate, subsonic flow of gas, partial differential equations, functional.
@article{SVMO_2017_19_1_a10,
     author = {A. V. Ankilov and P. A. Vel'misov},
     title = {Dynamic stability of elastic plate at jet flow},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {116--129},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a10/}
}
TY  - JOUR
AU  - A. V. Ankilov
AU  - P. A. Vel'misov
TI  - Dynamic stability of elastic plate at jet flow
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 116
EP  - 129
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a10/
LA  - ru
ID  - SVMO_2017_19_1_a10
ER  - 
%0 Journal Article
%A A. V. Ankilov
%A P. A. Vel'misov
%T Dynamic stability of elastic plate at jet flow
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 116-129
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a10/
%G ru
%F SVMO_2017_19_1_a10
A. V. Ankilov; P. A. Vel'misov. Dynamic stability of elastic plate at jet flow. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a10/

[1] L. I. Mogilevich, V. S. Popov, L. N. Rabinsky, E. L. Kuznetsova, “Mathematical model of the plate on elastic foundation interacting with pulsating viscous liquid layer”, Applied Mathematical Sciences, 10:21 (2016), 1101–1109 | DOI

[2] V. V. Vedeneev, “Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds”, Journal of Fluids and Structures, 40 (2013), 366–372 | DOI

[3] V. B. Kurzin, “Prodolnye kolebaniya plastiny, obtekaemoi vyazkoi zhidkostyu v kanale, obuslovlennye vynuzhdennymi poperechnymi kolebaniyami plastiny”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52:3 (2011), 153–157

[4] V. G. Sokolov, I. O. Razov, “Parametrical vibrations and dynamic stability of long-distance gas pipelines at above-ground laying”, Bulletin of Civil Engineers, 43:2 (2014), 65–68 (In Russ.) | MR

[5] E. Aulisa, A. Ibragimov, E. Y. Kaya-Cekin, “Fluid structure interaction problem with changing thickness beam and slightly compressible fluid”, Discrete Contin. Dyn. Syst. Ser. S 7, 6 (2014), 1133–1148 | DOI | MR | Zbl

[6] A. N. Kounadis, “Flutter instability and other singularity phenomena in symmetric systems via combination of mass distribution and weak damping”, Internat. J. Non-Linear Mech., 42:1 (2007), 24–35 | DOI | MR | Zbl

[7] S. Willems, A. Gulhan and B. Esser, “Shock induced fluid-structure interaction on a flexible wall in supersonic turbulent flow”, Progress in Flight Physics, 5 (2013), 285–308 | DOI

[8] P. A. Velmisov, Yu. A. Reshetnikov, Stability of viscoelastic plates at aerohydrodynamic influence, Saratov State University, Saratov, 1994, 176 pp. (In Russ.)

[9] A. V. Ankilov, P. A. Velmisov, Dynamics and stability of elastic plates at aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2009, 220 pp. (In Russ.)

[10] A. V. Ankilov, P. A. Velmisov, Mathematical modeling in problems of dynamic stability of deformable elements of constructions at aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2013, 322 pp. (In Russ.)

[11] A. V. Ankilov, P. A. Velmisov, Lyapunov functionals in some problems of dynamic stability of aeroelastic constructions, Ulyanovsk State Technical University, Ulyanovsk, 2015, 146 pp. (In Russ.)

[12] A. V. Ankilov, P. A. Velmisov, Stability of viscoelastic elements of walls of flowing channels, Ulyanovsk State Technical University, Ulyanovsk, 2000, 115 pp. (In Russ.)

[13] A. V. Ankilov, P. A. Velmisov, “Stability of solutions to an aerohydroelasticity problem”, Journal of Mathematical Sciences, 219:1 (2016), 14–26 | DOI | MR | Zbl

[14] A. V. Ankilov, P. A. Velmisov, “Stability of solutions of initial boundary value problem of aerohydroelasticity”, Contemporary Mathematics. Fundamental Directions., 59 (2016), 35–52 (In Russ.) | MR

[15] A. V. Ankilov, P. A. Velmisov, Yu. A. Tamarova, “Research of dynamics and stability of an elastic element of the flow channel”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 18:1 (2016), 94–107 (In Russ.) | MR | Zbl

[16] A. V. Ankilov, P. A. Velmisov, “Stability of viscoelastic elements of bearing surface in subsonic flow”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 9:1 (2007), 69–81 (In Russ.) | Zbl

[17] A. V. Ankilov, P. A. Velmisov, E. P. Semenova, “Research of dynamic stability of elastic elements of channel walls”, Bulletin of Saratov State Technical University, 2:1 (38) (2009), 7–17 (In Russ.)

[18] M. A. Lavrentev, Methods of complex variable functions theories, Science, M., 1973, 736 pp. (In Russ.) | MR

[19] F. D. Gahov, Boundary value problems, Publishing house of physical and mathematical literature, M., 1963, 640 pp. (In Russ.) | MR

[20] L. Kollatc, Eigenvalue problems, Science, M., 1968, 503 pp. (In Russ.) | MR