Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_1_a1, author = {A. Y. Dolgonsova}, title = {On foliations with transverse linear connection}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {19--29}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/} }
A. Y. Dolgonsova. On foliations with transverse linear connection. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/
[1] P. Molino, “Proprietes cohomologiques et proprietes topologiques des feuilletages a connexion transverse projetable”, Topology, 12:12 (1973), 317–325 | DOI | MR | Zbl
[2] N. I. Zhukova, A. Yu. Dolgonosova, “The automorphism groups of foliations with transverse linear connection”, Central European Journal of Mathematics, 11:12 (2013), 2076–2088 | MR | Zbl
[3] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin-Heidelberg-New York, 1972 | MR | Zbl
[4] I. V. Bel'ko, “Affine transformations of a transversal projectable connection on a foliated”, Math. USSR Sb., 117:2 (1982), 181–195 (In Russ.) | MR | Zbl
[5] A. J. Leslie, “A remark on the group of automorphisms of a foliations having a dense leaf”, J. Diff. Geom., 7 (1972), 597—601 | DOI | MR | Zbl
[6] N. I. Zhukova, “Complete foliations with transverse rigid geometries and their basic automorphisms”, Bulletin of Peoples' Friendship University of Russia, 2009, no. 2, 14—35
[7] R. A. Palais, Foundations of global non-linear analysis, Benjamin, New-York, 1968 | MR | Zbl
[8] P. Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980 | MR | Zbl
[9] E. Macias-Virgos, E. Sanmartin, “Manifolds of maps in Riemannian foliations”, Geometrial Dedicata, 2000, no. 79, 143–156 | DOI | MR | Zbl
[10] A. D. Lewis, “Affine connections and distributions with applications to nonholonomic mechanics”, Rep. Math. Phys., 42:1–2 (1998), 135–164 | DOI | MR | Zbl
[11] A. G. Walker, “Connexions for parallel distributions in the large”, Quart. J. Math, 2:6 (1955), 301–308 | DOI | MR
[12] D. Fried, W. Goldman, W. M Hirsh., “Afflne manilolds with nilpotent holonomy”, Comment. Math. Helvetici, 1981, no. 56, 487–523 | DOI | MR | Zbl
[13] R. A. Wolak, “Growth of leaves in transversely affine foliations”, Proceedings of the American mathematical society, 127:7 (1999), 2167–-2173 | DOI | MR | Zbl
[14] N. I. Zhukova, “The minimal sets of Cartan foliations”, Tr. MIAN, 256 (2012), 115–147 (In Russ.)
[15] N. I. Zhukova, A. Yu. Dolgonosova, “Equivalent approaches to the concept of completeness of foliations with transverse linear connection”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 17:4 (2015), 14–23 (In Russ.) | Zbl
[16] R. A. Wolak, “Leaves of foliations with transverse G -srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl
[17] R. A. Wolak, “Leaves of foliations with transverse G -srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl
[18] N. I. Zhukova, “An analogue of Lichnerovich's conjecture for conformal foliations”, Sib. math. journal, 52:3 (2011), 555–574 (In Russ.) | MR | Zbl
[19] N. I. Zhukova, A. Yu. Dolgonosova, “Pseudo-Riemannian foliations and their graphs”, Lobachevskii Journal of Mathematics, 2018, no. 1, 12–25 | MR
[20] N. I. Zhukova, K. I. Sheina, “A criterion for foliations with transverse linear connection to be pseudo-Riemannian”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 30–40 (In Russ.)
[21] A. Connes, Noncommutative geometry, Academic Press, Boston, 1994 | MR | Zbl