On foliations with transverse linear connection
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of this article is a review of the results on foliations with transversal linear connection obtained by the author together with N.I. Zhukova, and their comparison with the results of other authors. The work consists of three parts. The first part focuses on automorphism groups of foliations with a transversal linear connection in the category of foliations. In the second part the equivalence of the concepts of completeness for the class of foliations under investigation is studied. In the third part we present theorems on pseudo-Riemannian foliations that form an important class of foliations with a transversal linear connection. In particular, we present results on graphs of pseudo-Riemannian foliations that contain all information about foliations.
Mots-clés : foliation
Keywords: linear connection, pseudo-Riemannian foliation, graph of foliation, infinite-dimensional Lie group, Ehresmann connection.
@article{SVMO_2017_19_1_a1,
     author = {A. Y. Dolgonsova},
     title = {On foliations with transverse linear connection},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/}
}
TY  - JOUR
AU  - A. Y. Dolgonsova
TI  - On foliations with transverse linear connection
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 19
EP  - 29
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/
LA  - ru
ID  - SVMO_2017_19_1_a1
ER  - 
%0 Journal Article
%A A. Y. Dolgonsova
%T On foliations with transverse linear connection
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 19-29
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/
%G ru
%F SVMO_2017_19_1_a1
A. Y. Dolgonsova. On foliations with transverse linear connection. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a1/

[1] P. Molino, “Proprietes cohomologiques et proprietes topologiques des feuilletages a connexion transverse projetable”, Topology, 12:12 (1973), 317–325 | DOI | MR | Zbl

[2] N. I. Zhukova, A. Yu. Dolgonosova, “The automorphism groups of foliations with transverse linear connection”, Central European Journal of Mathematics, 11:12 (2013), 2076–2088 | MR | Zbl

[3] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin-Heidelberg-New York, 1972 | MR | Zbl

[4] I. V. Bel'ko, “Affine transformations of a transversal projectable connection on a foliated”, Math. USSR Sb., 117:2 (1982), 181–195 (In Russ.) | MR | Zbl

[5] A. J. Leslie, “A remark on the group of automorphisms of a foliations having a dense leaf”, J. Diff. Geom., 7 (1972), 597—601 | DOI | MR | Zbl

[6] N. I. Zhukova, “Complete foliations with transverse rigid geometries and their basic automorphisms”, Bulletin of Peoples' Friendship University of Russia, 2009, no. 2, 14—35

[7] R. A. Palais, Foundations of global non-linear analysis, Benjamin, New-York, 1968 | MR | Zbl

[8] P. Michor, Manifolds of differentiable mappings, Shiva, Orpington, 1980 | MR | Zbl

[9] E. Macias-Virgos, E. Sanmartin, “Manifolds of maps in Riemannian foliations”, Geometrial Dedicata, 2000, no. 79, 143–156 | DOI | MR | Zbl

[10] A. D. Lewis, “Affine connections and distributions with applications to nonholonomic mechanics”, Rep. Math. Phys., 42:1–2 (1998), 135–164 | DOI | MR | Zbl

[11] A. G. Walker, “Connexions for parallel distributions in the large”, Quart. J. Math, 2:6 (1955), 301–308 | DOI | MR

[12] D. Fried, W. Goldman, W. M Hirsh., “Afflne manilolds with nilpotent holonomy”, Comment. Math. Helvetici, 1981, no. 56, 487–523 | DOI | MR | Zbl

[13] R. A. Wolak, “Growth of leaves in transversely affine foliations”, Proceedings of the American mathematical society, 127:7 (1999), 2167–-2173 | DOI | MR | Zbl

[14] N. I. Zhukova, “The minimal sets of Cartan foliations”, Tr. MIAN, 256 (2012), 115–147 (In Russ.)

[15] N. I. Zhukova, A. Yu. Dolgonosova, “Equivalent approaches to the concept of completeness of foliations with transverse linear connection”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 17:4 (2015), 14–23 (In Russ.) | Zbl

[16] R. A. Wolak, “Leaves of foliations with transverse G -srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl

[17] R. A. Wolak, “Leaves of foliations with transverse G -srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl

[18] N. I. Zhukova, “An analogue of Lichnerovich's conjecture for conformal foliations”, Sib. math. journal, 52:3 (2011), 555–574 (In Russ.) | MR | Zbl

[19] N. I. Zhukova, A. Yu. Dolgonosova, “Pseudo-Riemannian foliations and their graphs”, Lobachevskii Journal of Mathematics, 2018, no. 1, 12–25 | MR

[20] N. I. Zhukova, K. I. Sheina, “A criterion for foliations with transverse linear connection to be pseudo-Riemannian”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 30–40 (In Russ.)

[21] A. Connes, Noncommutative geometry, Academic Press, Boston, 1994 | MR | Zbl