Gauss method application to solution of ill-conditioned systems of linear algebraic equations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the numerical solution of the system of linear algebraic equations that is singular under certain values of the problem parameter, which can be, for example, time. The solution of such system by the Kramer's rule or using Gaussian elimination method is impossible in the neighborhood of singularity of the system matrix. The algorithm is proposed which can successfully overcome the neighborhood of the singularity and singular points where the system matrix degenerates. The algorithm implies the application of the method of solution continuation with respect to the best parameter and Gaussian elimination method for linear algebraic equations’ system.
Keywords: system of linear algebraic equations, singular points, method of solution continuation with respect to a parameter, the best parameter of continuation, numerical methods, ordinary differential equations.
@article{SVMO_2017_19_1_a0,
     author = {L. B. Bolotin and E. B. Kuznetsov},
     title = {Gauss method application to solution of ill-conditioned systems of linear algebraic equations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a0/}
}
TY  - JOUR
AU  - L. B. Bolotin
AU  - E. B. Kuznetsov
TI  - Gauss method application to solution of ill-conditioned systems of linear algebraic equations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 13
EP  - 18
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a0/
LA  - ru
ID  - SVMO_2017_19_1_a0
ER  - 
%0 Journal Article
%A L. B. Bolotin
%A E. B. Kuznetsov
%T Gauss method application to solution of ill-conditioned systems of linear algebraic equations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 13-18
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a0/
%G ru
%F SVMO_2017_19_1_a0
L. B. Bolotin; E. B. Kuznetsov. Gauss method application to solution of ill-conditioned systems of linear algebraic equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/SVMO_2017_19_1_a0/

[1] L. B. Bolotin, E. B. Kuznetsov, “Solution of ill-conditioned system of linear algebraic equations”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:1 (2016), 7-11 (In Russ.) | Zbl

[2] L. B. Bolotin, E. B. Kuznetsov, “Solution of linear algebraic equations system with singularities”, Proceeding of the VII All-Russian Scientific Youth School-Seminar “Mathematical Modeling, Numerical Methods and Program Complexes” named after E.V. Voskresensky with international participation, 2016, 20-21 (In Russ.)

[3] V. I. Shalashilin, E. B. Kuznetsov, Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht / Boston / London, 2003, 236 pp. (In English.) | MR

[4] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, Nauka, Moscow, 1987, 599 pp. (In Russ.) | MR