Local homeomorphisms of Stone's compact and local convertibility measures mappings
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 64-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is about open continuous mappings from extremely disconnected Hausdorf's compact of countable type into topological space with connectivity components that are not sets of the Baire first category. It is proved that such mapping is local homomorphism if and only if it maps all first-cathegory sets (maybe, except subsets of unique closed nowhere dense set) into first-cathegory sets. The obtained result is used for characterization of local reversibility of measurable mappings that act on standard spaces with measures. In particular, it is found out that Luzin’s $N$-condition does not only guarantee the measurability of an image but actually is also a criterion of local reversibility.
Keywords: extremely disconnected compact, open-and-closed sets, a set of first Baire category, local homeomorphism, Luzin's $N$-condition, Stone compact, anti-injective property.
@article{SVMO_2016_18_4_a7,
     author = {P. M. Simonov and A. V. Chistyakov},
     title = {Local homeomorphisms of {Stone's} compact and local convertibility measures mappings},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {64--75},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a7/}
}
TY  - JOUR
AU  - P. M. Simonov
AU  - A. V. Chistyakov
TI  - Local homeomorphisms of Stone's compact and local convertibility measures mappings
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 64
EP  - 75
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a7/
LA  - ru
ID  - SVMO_2016_18_4_a7
ER  - 
%0 Journal Article
%A P. M. Simonov
%A A. V. Chistyakov
%T Local homeomorphisms of Stone's compact and local convertibility measures mappings
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 64-75
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a7/
%G ru
%F SVMO_2016_18_4_a7
P. M. Simonov; A. V. Chistyakov. Local homeomorphisms of Stone's compact and local convertibility measures mappings. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 64-75. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a7/

[1] N. Burbaki, Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977, 600 pp. | MR

[2] V. G. Vinokurov, “Kompaktnye mery i proizvedeniya prostranstv Lebega”, Mat. sbornik. Novaya seriya, 74 (116):3 (1967), 434–472 | Zbl

[3] D. A. Vladimirov, Bulevy algebry, Nauka, M., 1969, 320 pp. | MR

[4] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[5] A. V. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sbornik, 25:1 (1949), 107–150 | Zbl

[6] A. A. Samorodnitskii, Teoriya mery, Iz-vo Leningrad. un-ta, L., 1990, 268 pp. | MR

[7] G. Federer, Geometricheskaya teoriya mery, Nauka, Gl. red. fiz.-mat. lit., M., 1987, 760 pp. | MR

[8] A. V. Chistyakov, “O kusochno-in'ektivnykh izmerimykh otobrazheniyakh”, Izvestiya vuzov. Matematika., 2006, no. 5, 67–72 | Zbl

[9] A. V. Chistyakov, “Ob ogranichennykh resheniyakh stokhasticheskikh sistem Ito”, Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2009, no. 3(29), 103–121

[10] A. V. Chistyakov, “Silnaya neobratimost operatorov sdviga vdol traektorii brounovskogo dvizheniya”, Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2009, no. 7(33), 84–89

[11] R. Engelking, Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[12] N. J. Kalton, “Isomorphisms between $L_p$-function spaces when $p 1$”, J. of Funct. Anal, 42:3 (1981), 299–337 | DOI | MR