Stabilization of program motion for robotic manipulator on the base of the measurement of the link coordinates
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The use of the known strategies and algorithms for constructing and implementing the controllers of nonlinear mechanical systems has certain difficulties associated with the need to install the sensors for the complete measurement of the current coordinates and velocities, which complicates the design of the controlled object. For the majority of the modern practical problems on the control of robotic manipulators consisting of several units the requirement for information on the current values of the coordinates and velocities of the links is unattainable. In the article the problem of constructing a stabilizing control laws for robotic manipulators in the absence of the speed sensors is investigated. The investigation approach is based on the construction of non-linear dynamic compensator of the first order, which allows to build a non-linear control law fairly simple in its structure. The novelty of the results is in the construction of the control actions to address these problems in a rather general formulation. Using the method of Lyapunov vector functions the sufficient conditions for stabilization of program motion for multilink manipulators are obtained.
Keywords: robotic manipulator, program movement, stabilization, non-linear dynamic compensator, Lyapunov vector function.
@article{SVMO_2016_18_4_a5,
     author = {O. A. Peregudova and D. S. Makarov},
     title = {Stabilization of program motion for robotic manipulator on the base of the measurement of the link coordinates},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a5/}
}
TY  - JOUR
AU  - O. A. Peregudova
AU  - D. S. Makarov
TI  - Stabilization of program motion for robotic manipulator on the base of the measurement of the link coordinates
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 46
EP  - 51
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a5/
LA  - ru
ID  - SVMO_2016_18_4_a5
ER  - 
%0 Journal Article
%A O. A. Peregudova
%A D. S. Makarov
%T Stabilization of program motion for robotic manipulator on the base of the measurement of the link coordinates
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 46-51
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a5/
%G ru
%F SVMO_2016_18_4_a5
O. A. Peregudova; D. S. Makarov. Stabilization of program motion for robotic manipulator on the base of the measurement of the link coordinates. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 46-51. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a5/

[1] S. Nicosia and P. Tomei, “Robot control by using only joint position measurements”, IEEE Trans. Aut. Contr., 35:9 (1990), 1058-1061 | DOI | MR | Zbl

[2] H. Berghuis, P. Lohnberg and H. Nijmeijer, “Tracking control of robots using only position measurements”, 30th Conf. on Decision and Control, v. 1, 1991, 1039-1040 | DOI

[3] R. Kelly, “A simple set-point robot controller by using only position measurements”, Preprint 12th IFAC World Congress (Sydney, 1993), v. 6, 173-176

[4] A. Loria, “Global tracking control of one degree of freedom Euler-Lagrange systems without velocity measurements”, European J. Contr., 2 (1996), 144-151 | DOI | Zbl

[5] I. V. Burkov, “Stabilization of mechanical systems via bounded control and without velocity measurement”, 2nd Russian-Swedish Control Conf. (St. Petersburg Technical Univ., 1995), 37-41

[6] I. V. Burkov, “Stabilization of position of uniform motion of mechanical systems via bounded control and without velocity measurements”, 3-rd IEEE Multi - conference on Systems and Control (St. Petersburg, 2009), 400-405

[7] A. Loria, H. Nijmeijer, “Bounded output feedback tracking control of fully actuated Euler–Lagrange systems”, Systems Control Letters, 33:3 (1998), 151-161 | DOI | MR | Zbl

[8] Andreev A.S., Peregudova O.A., Makarov D.S., “Motion control of multilink manipulators without velocity measurement”, Proceedings of 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (Moscow, 2016) http://ieeexplore.ieee.org/document/7541159/

[9] M. Spong, H. Seth, M. Vidyasagar, Robot Dynamics and Control, Wiley, New York, 2004