Сritical density and integrals of liminal dislocation equation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 41-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with partial differential equation where unknown function is dislocation scalar density for a thin plate with large bending. Singular points and integrals of this equation are considered. It is shown that usage of characteristics method is necessary to obtain ordinary differential equations and their singular points. Two critical values of the dislocation scalar density for isolated singular point are found. They are sufficient for the conversion of initial equation into identity. Verhulst equation’s bifurcation is important for analysis of different kinds of singular points in determined form as well as under excitation by the white noise. The consequence is given for stationary singular points, for another ordinary differential equation, for critical plate parameters, for critical parameter of Verhulst equation excited by the noise, for dislocation effects, for hardening and fracture of the plate. Zeldovich problem is formulated as a problem of obtaining integrals for partial differential equations with singular points and topological invariant of the plate dislocation structure.
Keywords: Singular points, first order partial differential equation, ordinary differential equation, classification of integrals, bifurcation point of Verhulst equation, white noise.
@article{SVMO_2016_18_4_a4,
     author = {S. N. Nagornyh and E. V. Nagornykh},
     title = {{\CYRS}ritical density and integrals of liminal dislocation equation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {41--45},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a4/}
}
TY  - JOUR
AU  - S. N. Nagornyh
AU  - E. V. Nagornykh
TI  - Сritical density and integrals of liminal dislocation equation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 41
EP  - 45
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a4/
LA  - ru
ID  - SVMO_2016_18_4_a4
ER  - 
%0 Journal Article
%A S. N. Nagornyh
%A E. V. Nagornykh
%T Сritical density and integrals of liminal dislocation equation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 41-45
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a4/
%G ru
%F SVMO_2016_18_4_a4
S. N. Nagornyh; E. V. Nagornykh. Сritical density and integrals of liminal dislocation equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 41-45. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a4/

[1] Landau L. D., Livshits E. M., Teoriya uprugosti., Nauka, M., 1987, 246 pp. | MR

[2] Alekseenko S. N, Nagornykh S. N., “Liminalnoe dissipativnoe uravnenie plotnosti perepolzayuschikh dislokatsii dlya odnokomponentnogo izgiba ploskoi plastiny”, Zhurnal SVMO, 14:1 (2012) | Zbl

[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, URSS, M., 2003, 272 pp. | MR

[4] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody, Mir, M., 1987, 397 pp. | MR

[5] Nagornykh S. N., Sablukov D. S,, “Plotnost veroyatnosti kak reshenie uravneniya Fokkera-Planka v indutsirovannykh shumom perekhodakh”, Zhurnal SVMO, 17:1 (2015)

[6] Tikhonov A. N., Samarskii A. A,, Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR

[7] Fridel Zh., Dislokatsii, Mir, M., 1967, 643 pp.

[8] Zaitsev V. F., Polyanin A. D,, Spravochnik differentsialnye uravneniya s chastnymi proizvodnymi pervogo poryadka., Fiziko-matematicheskaya literatura, M., 2003, 416 pp.

[9] Zeldovich Ya. B., Izbrannye trudy. Khimicheskaya fizika. Gidrodinamika, Nauka, M., 1984, 374 pp. | MR