Application of kneading series to semiconjugacy of Lorenz maps of zero entropy
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 34-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

For one-dimensional discontinuous maps of Lorenz type with zero topological entropy, we apply the technique of kneading invariants and kneading series. The kneading technique was introduced first by J. Milnor and W. Thurston for continuous piecewise-monotone one-dimensional maps and was applied to maps with positive topological entropy. In present paper we show that by approaching the zero entropy one may (using kneading series) define invariant measure for Lorenz maps under consideration. Thus one may construct semiconjugacy (being actually a conjugacy in the transitive case) with a model map of unit slope.
Keywords: topological entropy, Lorenz type maps, kneading invariants.
@article{SVMO_2016_18_4_a3,
     author = {M. I. Malkin and K. A. Saphonov},
     title = {Application of kneading series to semiconjugacy of {Lorenz} maps of zero entropy},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {34--40},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a3/}
}
TY  - JOUR
AU  - M. I. Malkin
AU  - K. A. Saphonov
TI  - Application of kneading series to semiconjugacy of Lorenz maps of zero entropy
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 34
EP  - 40
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a3/
LA  - ru
ID  - SVMO_2016_18_4_a3
ER  - 
%0 Journal Article
%A M. I. Malkin
%A K. A. Saphonov
%T Application of kneading series to semiconjugacy of Lorenz maps of zero entropy
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 34-40
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a3/
%G ru
%F SVMO_2016_18_4_a3
M. I. Malkin; K. A. Saphonov. Application of kneading series to semiconjugacy of Lorenz maps of zero entropy. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 34-40. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a3/

[1] Afraimovich V., Sze-Bi Hsu, “Lecture on chaotic dynamical systems”, Studies in Advanced Mathematics, 28, AMS/IP, 2002 | MR

[2] M. Malkin., “On continuity of entropy of discontinuous mappings of the interval”, Selecta Mathematica Sovietica, 1989, 131–139 | Zbl

[3] L.-S. Young., “On the prevalence of horseshoes”, Trans. Amer. Math. Soc., 263:1 (1981), 75-88 | DOI | MR | Zbl

[4] J.Milnor and W.Thurston., “On iterated maps of the interval”, Dynamical Systems, Proc., 1986-87, Lec. Notes Math., 1342, ed. J.C.Alexander, Springer-Verlag, 1988 | MR

[5] M. Malkin, “Rotation intervals and the dynamics of Lorenz type mappings”, Selecta Mathematica Sovietica, 10 (1991), 265-275 | MR | Zbl

[6] M.I. Malkin, “O topologicheskoi sopryazhennosti razryvnykh otobrazhenii otrezka”, Ukrainskii Matematicheskii Zhurnal, 32:5 (1980), 610-616 | MR