Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_4_a15, author = {O. S. Yazovtseva and T. Ph. Mamedova and I. M. Gubaydullin}, title = {Investigation of the stability of a nontrivial solution of the system of kinetic equations of chemical reaction}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {152--158}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a15/} }
TY - JOUR AU - O. S. Yazovtseva AU - T. Ph. Mamedova AU - I. M. Gubaydullin TI - Investigation of the stability of a nontrivial solution of the system of kinetic equations of chemical reaction JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 152 EP - 158 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a15/ LA - ru ID - SVMO_2016_18_4_a15 ER -
%0 Journal Article %A O. S. Yazovtseva %A T. Ph. Mamedova %A I. M. Gubaydullin %T Investigation of the stability of a nontrivial solution of the system of kinetic equations of chemical reaction %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2016 %P 152-158 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a15/ %G ru %F SVMO_2016_18_4_a15
O. S. Yazovtseva; T. Ph. Mamedova; I. M. Gubaydullin. Investigation of the stability of a nontrivial solution of the system of kinetic equations of chemical reaction. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 152-158. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a15/
[1] Koledina K. F., Gubaidullin I. M., “Opredelenie kineticheskikh parametrov chastnoi reaktsii gidroalyuminirovaniya olefinov diizobutilalyuminiikhloridom (ClAlBui2)v kataliticheschikh usloviyakh”, Vestnik Bashkirsk. un-ta, 2008, no. 3(1)
[2] Saifullina L. F., Gubaidullin I. M., Enikeev M. R., Spivak S. I., Informatsionno-analiticheskaya sistema obratnykh zadach khimicheskoi kinetiki, Uchebnoe posobie, RIO BashGU, Ufa, 2011
[3] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950, 471 pp. | MR
[4] Voskresenskii E. V., Metody sravneniya v nelineinom analize, Izd-vo Sarat. Un-ta, Saransk, 1990, 224 pp. | MR
[5] Voskresenskii E. V., Asimptoticheskie metody: teoriya i prilozheniya, SVMO, Saransk, 2000, 300 pp.
[6] Mamedova T. F., Lyapina A. A., “Algoritm issledovaniya modelei nelineinoi dinamiki”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2013, no. 3(27), 48-57
[7] Mamedova T. F., Egorova D. K., Desyaev E. V., “Analiz ustoichivosti matematicheskoi modeli Lukasa po chasti peremennykh”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:3 (2015), 30-36 | Zbl
[8] Augustine S. Chai, “Modified Merson's integration algorithm which saves two evaluations at each step”, SIMULATION, 22:3 (1974), 90-92 | DOI | Zbl
[9] Tikhonova M. V., Gubaidullin I. M., Spivak S. I., “Chislennoe reshenie pryamoi kineticheskoi zadachi metodami Rozenbroka i Mishelsena dlya zhestkikh sistem differentsialnykh uravnenii”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 12:2 (2010), 26-33 | Zbl