Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 119-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problems for the time-periodic solutions of quasi-stationary magnetic approximation for Maxwell equations are studied. The case of inhomogeneous media containing a conducting, non-conducting and low-conducting inclusions is considered. The asymptotic connection of the solutions of problems with non-conducting and low-conducting inclusions is investigated.
Keywords: Maxwell equations, quasistationary magnetic approximation, periodic solutions, inhomogeneous media, electric and magnetic boundary conditions, non-conducting and low-conducting inclusions.
@article{SVMO_2016_18_4_a12,
     author = {A. V. Kalinin and A. A. Tyukhtina},
     title = {Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {119--133},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a12/}
}
TY  - JOUR
AU  - A. V. Kalinin
AU  - A. A. Tyukhtina
TI  - Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 119
EP  - 133
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a12/
LA  - ru
ID  - SVMO_2016_18_4_a12
ER  - 
%0 Journal Article
%A A. V. Kalinin
%A A. A. Tyukhtina
%T Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 119-133
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a12/
%G ru
%F SVMO_2016_18_4_a12
A. V. Kalinin; A. A. Tyukhtina. Quasistationary electromagnetic fields in inhomogeneous media with non-conductive and low conductive inclusions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 119-133. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a12/

[1] M. P. Galanin, Yu. P. Popov, Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh, Nauka, Fizmatlit, M., 1995, 316 pp. | MR

[2] A. Alonso Rodriguez, A. Valli, Eddy current approximation of Maxwell equations, Springer-Verlag Italia, Milano, 2010 | MR | Zbl

[3] J. D. Lavers, “State of the art of numerical modeling for induction processes”, COMPEL, 27 (2008), 335–349 | DOI | Zbl

[4] A. Bermudes, R. Rodriguez, P. Salgado, “FEM for 3D eddy current problems in bounded domains subject to realistic boundary conditions. An application to metallurgical electrodes”, Arch. Comput. Methods Engrg., 12 (2005), 67–114 | MR

[5] R. Y. Tang, S. H. Wang, Y. Li, X. L. Wang, X. Cui, “Transient simulation of power transformers using 3-D finite element model coupled to electric circuit equations”, IEEE Trans. Magn., 36 (2000), 1417–1420 | DOI

[6] M. T. Thompson, “Eddy current magnetic levitation. Models and experiments”, IEEE Potentials, 19 (2000), 40–44 | DOI

[7] B. A. Auld, J. C. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation”, J. Nondestr. Eval., 18 (1999), 3–36 | DOI

[8] S. Baillet, J. C. Mosher, R. M. Leahy, “Electromagnetic brain mapping”, IEEE Signal Process. Magaz., 18 (2001), 14–30 | DOI

[9] Zh.-L. Kulon, Zh.-K. Sabonnader, SAPR v elektrotekhnike, Mir, M., 1988, 208 pp.

[10] A. Bossavit, Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press, Boston, 1998 | MR | Zbl

[11] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR

[12] E. B. Bykhovskii, N. V. Smirnov, “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Trudy MIAN SSSR, 59, 1960, 5–36

[13] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[14] V. Girault, P. Raviart P., Finite element methods for Navier–Stokes equations, Springler-Verlag, N.Y., 1986 | MR | Zbl

[15] A. V. Kalinin, A. A. Kalinkina, “Lp - otsenki vektornykh polei”, Izvestiya Vuzov. Matematika, 2004, no. 3, 26–35 | Zbl

[16] Z. Chen, Q. Du, J. Zou, “Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Anal., 37:5 (2000), 1642–1570 | DOI | MR

[17] A. V. Kalinin, S. F. Morozov, “Statsionarnye elektromagnitnye polya v neodnorodnykh sredakh s neprovodyaschimi i slaboprovodyaschimi vklyucheniyami”, Vestnik NNGU im. N.I. Lobachevskogo. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1999, no. 1(20), 48–62 | Zbl

[18] A. V. Kalinin, A. A. Tyukhtina, “Asimptoticheskoe povedenie reshenii nekotorykh kraevykh zadach dlya ellipticheskikh uravnenii”, Vestnik NNGU im. N.I. Lobachevskogo, 2010, no. 2, 117–123

[19] M. Cessenat, Mathematical methods in electromagnetism: linear theory and applications, World Scientific, 1996 | MR | Zbl

[20] Kh. Gaevskii, K. Grëger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR