On scenarios of chaos appearance in three-dimensional nonoriented maps
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For one-parameter families of three-dimensional nonorientable maps we study scenarios of appearance of strange homoclinic attractors (containing only one fixed point). We describe 4 different scenarios leading to discrete homoclinic nonorientable attractors: correspondingly, of Lorenz and figure-eight types (containing a saddle fixed point), and spiral attractors of two types (containing a saddle-focus fixed point). Some examples of realization of these scenarios in the case of three-dimensional nonorientable generalized Henon maps are given.
Keywords: strange attractor, Lorenz attractor, spiral attractor, invariant curve, three-dimensional generalized Henon map.
Mots-clés : homoclinic orbit
@article{SVMO_2016_18_4_a1,
     author = {A. S. Gonchenko and A. D. Kozlov},
     title = {On scenarios of chaos appearance in three-dimensional nonoriented maps},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a1/}
}
TY  - JOUR
AU  - A. S. Gonchenko
AU  - A. D. Kozlov
TI  - On scenarios of chaos appearance in three-dimensional nonoriented maps
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 17
EP  - 29
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a1/
LA  - ru
ID  - SVMO_2016_18_4_a1
ER  - 
%0 Journal Article
%A A. S. Gonchenko
%A A. D. Kozlov
%T On scenarios of chaos appearance in three-dimensional nonoriented maps
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 17-29
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a1/
%G ru
%F SVMO_2016_18_4_a1
A. S. Gonchenko; A. D. Kozlov. On scenarios of chaos appearance in three-dimensional nonoriented maps. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a1/

[1] Gonchenko A.S., Gonchenko S.V., Shilnikov L.P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya Dinamika, 8:1 (2012), 3–28

[2] Gonchenko A.S., Gonchenko S.V., Kazakov A.O. and Turaev D., “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bif. and Chaos, 24:8 (2014), 25 pp. | DOI | MR

[3] Gonchenko A., Gonchenko S., “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps”, Physica D (to appear) , arXiv: 1510.02252v2 [math.DS] | MR

[4] S.V. Gonchenko, A.S. Gonchenko, A.O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regular and Chaotic Dynamics, 15:5 (2013), 521–538 | DOI | MR

[5] A.S. Gonchenko, S.V. Gonchenko, “Lorenz-like attractors in a nonholonomic model of a rattleback”, Nonlinearity, 28 (2015), 3403–3417 | DOI | MR | Zbl

[6] L.P. Shilnikov, “Teoriya bifurkatsii i model Lorentsa”, Dopolnenie I k kn.: Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 19 pp. | MR

[7] S.Gonchenko, I.Ovsyannikov, C.Simo, D.Turaev, “Three-dimensional Henon-like maps and wild Lorenz-like attractors”, Int. J. of Bifurcation and chaos, 15:11 (2005), 3493–3508 | DOI | MR | Zbl

[8] S.V. Gonchenko, A.S. Gonchenko, I.I. Ovsyannikov, D.V. Turaev, “Examples of Lorenz-like Attractors in Henon-like Maps”, Math. Model. Nat. Phenom., 8:5 (2013), 32–54 | MR

[9] A.L. Shilnikov, “Bifurkatsii i khaos v sisteme Morioka-Shimitsu”, Metody KTDU, Gorkii, 1986, 180–183

[10] A.L. Shilnikov, “On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model”, Physica D, 62 (1993), 338–346 | DOI | MR | Zbl

[11] Lorenz E. N., “Deterministic nonperiodic flow”, J. of the Atmospheric Sciences, 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[12] Gonchenko S.V., Simo C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26 (2013), 621–678 | DOI | MR | Zbl

[13] Shilnikov L.P., “Teoriya bifurkatsii i turbulentnost - I”, Metody KTDU, Mezhvuzovskii sb., Gorkii, 1986, 150–163

[14] V.S. Afraimovich, L.P. Shilnikov, “Invariantnye dvumernye tory, ikh razrushenie i stokhastichnost”, Metody KTDU, Mezhvuzovskii sb., Gorkii, 1983, 3–26