Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_4_a0, author = {A. S. Andreev and L. S. Takhtenkova}, title = {On stability and stabilization of the second-order nonlinear equation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {8--16}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/} }
TY - JOUR AU - A. S. Andreev AU - L. S. Takhtenkova TI - On stability and stabilization of the second-order nonlinear equation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 8 EP - 16 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/ LA - ru ID - SVMO_2016_18_4_a0 ER -
A. S. Andreev; L. S. Takhtenkova. On stability and stabilization of the second-order nonlinear equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 8-16. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/
[1] D. R. Merkin, Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987, 304 pp. | MR
[2] A. Andreev, O. Yurjeva, “On stability of a mechanical system with one degree of freedom”, Facta Universitatis, Series Mechanics, Automatic, Control and Robotics, 2:7/2, Special issue (1997), 409-420 | MR
[3] R. J. Ballieu, K. Peiffer, “Attractivity of the Origin for the Equation $\ddot{x}+k(t,x,\dot{x})||\dot{x}||^\alpha \dot{x}+g(x)=0$”, J. of Mat. Anal. And Appl., 65 (1978), 321-332 | DOI | MR | Zbl
[4] L. Hatvani, T. Krisztin, V. Totik, “A necessary and sufficient condition for the asymptotic stability of the damped oscillator”, J. Different. Equat., 119:1 (1995), 209-223 | DOI | MR | Zbl
[5] L. Hatvani, “Integral conditions on the asymptotic stability of the damped linear oscillator with small damping”, Proc. Amer. Math. Soc., 124:2 (1996), 415-422 | DOI | MR | Zbl
[6] N. Ianiro, C. Maffei, “On the asymptotic behavior of the solutions of nonlinear equation”, Nonlinear differential equations: invariance,stability and bifurcations, Acad. Press, N-Y., 1982, 175-182 | MR
[7] A. S. Andreev, O. D. Yureva, “Ob ustoichivosti mekhanicheskoi sistemy s odnoi stepenyu svobody”, Izvestiya RAEN seriya MMMIU, 1:1 (1997), 102-114 | Zbl
[8] L. Khatvani, “O deistvii dempfirovaniya na svoistva ustoichivosti ravnovesii neavtonomnykh sistem”, PMM, 65:4 (2001), 725-732 | MR
[9] R. Z. Khasminskii, Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 367 pp. | MR
[10] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 48:2 (1984), 225-232 | MR
[11] A. S. Andreev, O. A. Peregudova, “K metodu sravneniya v zadachakh ob asimptoticheskoi ustoichivosti”, PMM, 70:6 (2006), 965-976 | MR | Zbl
[12] B. Oksendal, Stokhasticheskie differentsialnye uravneniya.Vvedenie v teoriyu i prilozheniya, Mir, AST, M., 2003, 408 pp.
[13] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 533 pp. | MR
[14] V. V. Beletskii, Dvizhenie iskustvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965, 416 pp.
[15] A. A. Khentov, “Ob ustoichivosti po pervomu priblizheniyu odnogo vrascheniya iskusstvennogo sputnika Zemli vokrug tsentra mass”, Kosmicheskie issledovaniya, 6:5 (1966), 733-795
[16] A. P. Markeev, “Ob odnom sposobe analiticheskogo predstavleniya otobrazhenii, sokhranyayuschikh ploschad”, PMM, 75:5 (2014), 611-624