On stability and stabilization of the second-order nonlinear equation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 8-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the solution of the problem about sufficient conditions for asymptotic stability of equilibrium position for special-kind ordinary and stochastic differential equations. Theorems obtained in the paper are applied for solution of the stabilization problem for two-dimensional rotational motion of a satellite on elliptic orbit. This motion may be influenced by random forces; parameters of the motion also may vary stochastically. Authors prove the theorem about the sufficient conditions of asymptotic stability. These conditions are based on Lyapunov function with sign-constant derivative by virtue of the ordinary differential equation and the corresponding operator by virtue of the stochastic differential equation. Novelty of the results is that new robust stability conditions are obtained. In particular the authors solved the problem about stabilization of satellite’s motion wherein it makes three turns in absolute space during a time equal to two periods of revolution of the center of mass on the orbit.
Keywords: Lyapunov function, asymptotic stability, stabilization
Mots-clés : equilibrium position, satellite, stochastic perturbation.
@article{SVMO_2016_18_4_a0,
     author = {A. S. Andreev and L. S. Takhtenkova},
     title = {On stability and stabilization of the second-order nonlinear equation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {8--16},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/}
}
TY  - JOUR
AU  - A. S. Andreev
AU  - L. S. Takhtenkova
TI  - On stability and stabilization of the second-order nonlinear equation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 8
EP  - 16
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/
LA  - ru
ID  - SVMO_2016_18_4_a0
ER  - 
%0 Journal Article
%A A. S. Andreev
%A L. S. Takhtenkova
%T On stability and stabilization of the second-order nonlinear equation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 8-16
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/
%G ru
%F SVMO_2016_18_4_a0
A. S. Andreev; L. S. Takhtenkova. On stability and stabilization of the second-order nonlinear equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 4, pp. 8-16. http://geodesic.mathdoc.fr/item/SVMO_2016_18_4_a0/

[1] D. R. Merkin, Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987, 304 pp. | MR

[2] A. Andreev, O. Yurjeva, “On stability of a mechanical system with one degree of freedom”, Facta Universitatis, Series Mechanics, Automatic, Control and Robotics, 2:7/2, Special issue (1997), 409-420 | MR

[3] R. J. Ballieu, K. Peiffer, “Attractivity of the Origin for the Equation $\ddot{x}+k(t,x,\dot{x})||\dot{x}||^\alpha \dot{x}+g(x)=0$”, J. of Mat. Anal. And Appl., 65 (1978), 321-332 | DOI | MR | Zbl

[4] L. Hatvani, T. Krisztin, V. Totik, “A necessary and sufficient condition for the asymptotic stability of the damped oscillator”, J. Different. Equat., 119:1 (1995), 209-223 | DOI | MR | Zbl

[5] L. Hatvani, “Integral conditions on the asymptotic stability of the damped linear oscillator with small damping”, Proc. Amer. Math. Soc., 124:2 (1996), 415-422 | DOI | MR | Zbl

[6] N. Ianiro, C. Maffei, “On the asymptotic behavior of the solutions of nonlinear equation”, Nonlinear differential equations: invariance,stability and bifurcations, Acad. Press, N-Y., 1982, 175-182 | MR

[7] A. S. Andreev, O. D. Yureva, “Ob ustoichivosti mekhanicheskoi sistemy s odnoi stepenyu svobody”, Izvestiya RAEN seriya MMMIU, 1:1 (1997), 102-114 | Zbl

[8] L. Khatvani, “O deistvii dempfirovaniya na svoistva ustoichivosti ravnovesii neavtonomnykh sistem”, PMM, 65:4 (2001), 725-732 | MR

[9] R. Z. Khasminskii, Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 367 pp. | MR

[10] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 48:2 (1984), 225-232 | MR

[11] A. S. Andreev, O. A. Peregudova, “K metodu sravneniya v zadachakh ob asimptoticheskoi ustoichivosti”, PMM, 70:6 (2006), 965-976 | MR | Zbl

[12] B. Oksendal, Stokhasticheskie differentsialnye uravneniya.Vvedenie v teoriyu i prilozheniya, Mir, AST, M., 2003, 408 pp.

[13] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 533 pp. | MR

[14] V. V. Beletskii, Dvizhenie iskustvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965, 416 pp.

[15] A. A. Khentov, “Ob ustoichivosti po pervomu priblizheniyu odnogo vrascheniya iskusstvennogo sputnika Zemli vokrug tsentra mass”, Kosmicheskie issledovaniya, 6:5 (1966), 733-795

[16] A. P. Markeev, “Ob odnom sposobe analiticheskogo predstavleniya otobrazhenii, sokhranyayuschikh ploschad”, PMM, 75:5 (2014), 611-624