A continuous analogue of modified Newton method
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the iterative Newton method we invert derivative of operator of equation for every step. In the modified Newton method we findinverse of derivative of operator only at initial point of iterative process. Then amount of calculations decreases and convergence speed falls. Continuous analog of Newton method is known. We construct the continuous analog of the modified Newton method for equation with strongly monotone operator in this note. We obtain sufficient conditions of strong convergence in Hilbert space for propose method.
Keywords: Hilbert space, strictly monotone operator, Frechet derivative, continuous method, operator of contraction
Mots-clés : convergence.
@article{SVMO_2016_18_2_a8,
     author = {I. P. Ryazantseva and Bubnova O.Y.},
     title = {A continuous analogue of modified {Newton} method},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {67--71},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a8/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
AU  - Bubnova O.Y.
TI  - A continuous analogue of modified Newton method
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 67
EP  - 71
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a8/
LA  - ru
ID  - SVMO_2016_18_2_a8
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%A Bubnova O.Y.
%T A continuous analogue of modified Newton method
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 67-71
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a8/
%G ru
%F SVMO_2016_18_2_a8
I. P. Ryazantseva; Bubnova O.Y. A continuous analogue of modified Newton method. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 67-71. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a8/

[1] Kachurovskii R.I., “Nelineinye monotonnye operatory v banakhovykh prostranstvakh”, Uspekhi matematicheskikh nauk, XXIII:2(140) (1968), 121–168

[2] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, Moskva, 1972 | MR

[3] Gavurin M.K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izvestiya vuzov. Matematika, 1958, no. 5(6), 18–31 | MR | Zbl

[4] Trenogin V.A., Funktsionalnyi analiz, Nauka, Moskva, 1980 | MR

[5] Antipin A.S., “Neppepyvnye i itepativnye ppotsessy s opepatopami ppoektipovaniya i tipa ppoektipovaniya”, Vychisl. vopposy analiza bolshikh sistem, Vopposy kibepnetiki, Nauchnyi sovet po kompleksnoi ppobleme “Kibepnetika” AN SSSR, M., 1989, 5–43

[6] Ryazantseva I.P., Izbrannye glavy teorii operatorov monotonnogo tipa, NGTU, Nizhnii Novgorod, 2008