@article{SVMO_2016_18_2_a7,
author = {M. I. Malkin and K. A. Saphonov},
title = {Continuity of topological entropy for piecewise smooth {Lorenz} type mappings},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {59--66},
year = {2016},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a7/}
}
TY - JOUR AU - M. I. Malkin AU - K. A. Saphonov TI - Continuity of topological entropy for piecewise smooth Lorenz type mappings JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 59 EP - 66 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a7/ LA - ru ID - SVMO_2016_18_2_a7 ER -
M. I. Malkin; K. A. Saphonov. Continuity of topological entropy for piecewise smooth Lorenz type mappings. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 59-66. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a7/
[1] M. Malkin, “On continuity of entropy of discontinuous mappings of the interval”, Selecta Mathematica Sovietica, 8 (1989), 131–139 | Zbl
[2] M.I. Malkin, K.A. Safonov, “Tochnaya otsenka razryvov entropii dlya otobrazhenii lorentsevskogo tipa”, Zhurnal Srednevolzhskogo Matematicheskogo Obschestva, 17:4 (2015), 31–36 | Zbl
[3] L.-S. Young, “On the prevalence of horseshoes”, Trans. Amer. Math. Soc., 263:1 (1981), 75–88 | DOI | MR | Zbl
[4] Afraimovich V., Sze-Bi Hsu, Lecture on chaotic dynamical systems, Studies in Advanced Mathematics, 28, AMS/IP, N.-Y., 2002 | MR
[5] M.-C. Li, M. Malkin, “Smooth symmetric and Lorenz models for unimodal maps”, International Journal of Bifurcation and Chaos, 13 (2003), 3353–3372 | DOI | MR
[6] J.Milnor, W.Thurston, “On iterated maps of the interval”, Dynamical Systems, Lec. Notes Math., 1342, ed. J.C. Alexander, Springer-Verlag, N.-Y., 1988 | MR
[7] M. Misiurewicz, “Jumps of entropy in one dimension”, Fundamenta Mathematicae, 132 (1989), 215–226 | DOI | MR | Zbl