A criterion for foliations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for a foliation of codimension $q$ on $n$-dimensional manifold with transverse linear connection to admit a transverse invariant pseudo-Riemannian metric of a given signature which is parallel with the respect to the indicated connection. In particular we obtain a criterion for a foliation with transverse linear connection to be Riemannian foliation.
Mots-clés : foliation
Keywords: linear connection, holonomy group of a connection, the germ holonomy group of a leaf.
@article{SVMO_2016_18_2_a4,
     author = {N. I. Zhukova and K. I. Sheina},
     title = {A criterion for foliations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - K. I. Sheina
TI  - A criterion for foliations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 30
EP  - 40
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/
LA  - ru
ID  - SVMO_2016_18_2_a4
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A K. I. Sheina
%T A criterion for foliations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 30-40
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/
%G ru
%F SVMO_2016_18_2_a4
N. I. Zhukova; K. I. Sheina. A criterion for foliations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 30-40. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/

[1] Molino P., Foliations on Riemannian manifolds and submanifolds, Birkhauser, 1988, 339 pp.

[2] Tondeuer P., Foliations on Riemannian manifolsd and submanifolds, Birkhauser, 1997, 286 pp.

[3] Rovenskii V. Y., Foliations on Riemannian manifolsd and submanifolds, Birkhauser, 1997, 286 pp. | MR

[4] Wolak R. A., “Leaves of foliations with transverse $G$-srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl

[5] Wolak R. A., “Foliations admitting transverse systems of differential equations”, Compositio Math., 67 (1988), 89–101 | MR | Zbl

[6] Zhukova N. I., “Grafik sloeniya so svyaznostyu Eresmana i stabilnost sloev”, Izv. vuzov. Matem., 1994, no. 2, 78–81 | Zbl

[7] Zhukova N. I., “Local and global stability of compact leaves and foliations”, Zh. Mat. Fiz. Anal. Geom, 9:3 (2013), 400–420 | MR | Zbl

[8] Zhukova N. I., “Attraktory i analog gipotezy Likhnerovicha dlya konformnykh sloenii”, Sib. matem. zhurn., 52:3 (2011), 555–574 | MR | Zbl

[9] Zhukova N. I., “Attraktory sloenii s transversalnoi parabolicheskoi geometriei ranga odin”, Matem. zametki, 93:6 (2013), 944–946 | DOI | Zbl

[10] O'Neil B., Semi-Riemannian geometry, Academic Press, 1983, 468 pp. | MR | Zbl

[11] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, 1985, 400 pp. | MR

[12] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. MIAN, 256, 2007, 115–-147 | Zbl

[13] Schmidt B. G., “Conditions on a Connection to be a Metric Connection”, Commun. math. Phys., 29 (1973), Springer-Verlag, 55–59 pp. | MR

[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, 1988, 428 pp.

[15] Zhukova {N}. I., Dolgonosova A. Yu., “The automorphism groups of foliations with transverse linear connection”, Central European Journal of Mathematics, 11:12 (2013), 2076–2088 | MR | Zbl