Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_2_a4, author = {N. I. Zhukova and K. I. Sheina}, title = {A criterion for foliations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {30--40}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/} }
N. I. Zhukova; K. I. Sheina. A criterion for foliations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 30-40. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a4/
[1] Molino P., Foliations on Riemannian manifolds and submanifolds, Birkhauser, 1988, 339 pp.
[2] Tondeuer P., Foliations on Riemannian manifolsd and submanifolds, Birkhauser, 1997, 286 pp.
[3] Rovenskii V. Y., Foliations on Riemannian manifolsd and submanifolds, Birkhauser, 1997, 286 pp. | MR
[4] Wolak R. A., “Leaves of foliations with transverse $G$-srtuctures of finite type”, Publications Matematiques, 33 (1989), 153–162 | DOI | MR | Zbl
[5] Wolak R. A., “Foliations admitting transverse systems of differential equations”, Compositio Math., 67 (1988), 89–101 | MR | Zbl
[6] Zhukova N. I., “Grafik sloeniya so svyaznostyu Eresmana i stabilnost sloev”, Izv. vuzov. Matem., 1994, no. 2, 78–81 | Zbl
[7] Zhukova N. I., “Local and global stability of compact leaves and foliations”, Zh. Mat. Fiz. Anal. Geom, 9:3 (2013), 400–420 | MR | Zbl
[8] Zhukova N. I., “Attraktory i analog gipotezy Likhnerovicha dlya konformnykh sloenii”, Sib. matem. zhurn., 52:3 (2011), 555–574 | MR | Zbl
[9] Zhukova N. I., “Attraktory sloenii s transversalnoi parabolicheskoi geometriei ranga odin”, Matem. zametki, 93:6 (2013), 944–946 | DOI | Zbl
[10] O'Neil B., Semi-Riemannian geometry, Academic Press, 1983, 468 pp. | MR | Zbl
[11] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, 1985, 400 pp. | MR
[12] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. MIAN, 256, 2007, 115–-147 | Zbl
[13] Schmidt B. G., “Conditions on a Connection to be a Metric Connection”, Commun. math. Phys., 29 (1973), Springer-Verlag, 55–59 pp. | MR
[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, 1988, 428 pp.
[15] Zhukova {N}. I., Dolgonosova A. Yu., “The automorphism groups of foliations with transverse linear connection”, Central European Journal of Mathematics, 11:12 (2013), 2076–2088 | MR | Zbl