Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 25-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic stability and stability of partial equilibrium state under constantly acting perturbations, small at any time, of nonlinear system of differential equations, for which a system of the first approximation includes homogeneous vector-functions of order $\mu>1$.
Keywords: asymptotic stability, Lyapunov function
Mots-clés : perturbations, phase variables, equilibrium position.
@article{SVMO_2016_18_2_a3,
     author = {V. I. Dobkin and V. N. Shchennikov and E. V. Shchennikova},
     title = {Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {25--29},
     year = {2016},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/}
}
TY  - JOUR
AU  - V. I. Dobkin
AU  - V. N. Shchennikov
AU  - E. V. Shchennikova
TI  - Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 25
EP  - 29
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/
LA  - ru
ID  - SVMO_2016_18_2_a3
ER  - 
%0 Journal Article
%A V. I. Dobkin
%A V. N. Shchennikov
%A E. V. Shchennikova
%T Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 25-29
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/
%G ru
%F SVMO_2016_18_2_a3
V. I. Dobkin; V. N. Shchennikov; E. V. Shchennikova. Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 25-29. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/

[1] Schennikov V. N.., “Issledovanie ustoichivosti po chasti peremennykh differentsialnykh sistem s odnorodnymi pravymi chastyami”, Differentsialnye uravneniya, 1984, no. 8, 1645–1649, S.

[2] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i predpolozheniya, Nauchnyi mir, M., 2001, 320 pp. | MR

[3] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973, 272 pp. | MR

[4] Krassovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatiz, M., 1959, 212 pp. | MR

[5] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987, 256 pp. | MR

[6] Malkin I. G., Nekotorye zadachi teorii ustoichivosti dvizheniya, Nauka, M., 1966, 632 pp. | MR