Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 25-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic stability and stability of partial equilibrium state under constantly acting perturbations, small at any time, of nonlinear system of differential equations, for which a system of the first approximation includes homogeneous vector-functions of order $\mu>1$.
Keywords: asymptotic stability, Lyapunov function
Mots-clés : perturbations, phase variables, equilibrium position.
@article{SVMO_2016_18_2_a3,
     author = {V. I. Dobkin and V. N. Shchennikov and E. V. Shchennikova},
     title = {Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {25--29},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/}
}
TY  - JOUR
AU  - V. I. Dobkin
AU  - V. N. Shchennikov
AU  - E. V. Shchennikova
TI  - Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 25
EP  - 29
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/
LA  - ru
ID  - SVMO_2016_18_2_a3
ER  - 
%0 Journal Article
%A V. I. Dobkin
%A V. N. Shchennikov
%A E. V. Shchennikova
%T Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 25-29
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/
%G ru
%F SVMO_2016_18_2_a3
V. I. Dobkin; V. N. Shchennikov; E. V. Shchennikova. Research of stability-similar properties of partial-equilibrium state of a system of nonlinear differentional equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 25-29. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a3/

[1] Schennikov V. N.., “Issledovanie ustoichivosti po chasti peremennykh differentsialnykh sistem s odnorodnymi pravymi chastyami”, Differentsialnye uravneniya, 1984, no. 8, 1645–1649, S.

[2] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i predpolozheniya, Nauchnyi mir, M., 2001, 320 pp. | MR

[3] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973, 272 pp. | MR

[4] Krassovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatiz, M., 1959, 212 pp. | MR

[5] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987, 256 pp. | MR

[6] Malkin I. G., Nekotorye zadachi teorii ustoichivosti dvizheniya, Nauka, M., 1966, 632 pp. | MR