On structure of one dimensional basic sets of endomorphisms of surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 16-24

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the study of the dynamics in the neighborhood of one-dimensional basic sets of $C^k$, $k \geq 1$, endomorphism satisfying axiom of $A$ and given on surfaces. It is established that if one-dimensional basic set of endomorphism $f$ has the type $ (1, 1)$ and is a one-dimensional submanifold without boundary, then it is an attractor smoothly embedded in ambient surface. Moreover, there is a $ k \geq 1$ such that the restriction of the endomorphism $f^k$ to any connected component of the attractor is expanding endomorphism. It is also established that if the basic set of endomorphism $f$ has the type $ (2, 0)$ and is a one-dimensional submanifold without boundary then it is a repeller and there is a $ k \geq 1 $ such that the restriction of the endomorphism $f^k$ to any connected component of the basic set is expanding endomorphism.
Mots-clés : axiom $A$, endomorphism
Keywords: basic set.
@article{SVMO_2016_18_2_a2,
     author = {V. Z. Grines and E. D. Kurenkov},
     title = {On structure of one dimensional basic sets of endomorphisms of surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. D. Kurenkov
TI  - On structure of one dimensional basic sets of endomorphisms of surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 16
EP  - 24
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/
LA  - ru
ID  - SVMO_2016_18_2_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. D. Kurenkov
%T On structure of one dimensional basic sets of endomorphisms of surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 16-24
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/
%G ru
%F SVMO_2016_18_2_a2
V. Z. Grines; E. D. Kurenkov. On structure of one dimensional basic sets of endomorphisms of surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/