On structure of one dimensional basic sets of endomorphisms of surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the study of the dynamics in the neighborhood of one-dimensional basic sets of $C^k$, $k \geq 1$, endomorphism satisfying axiom of $A$ and given on surfaces. It is established that if one-dimensional basic set of endomorphism $f$ has the type $ (1, 1)$ and is a one-dimensional submanifold without boundary, then it is an attractor smoothly embedded in ambient surface. Moreover, there is a $ k \geq 1$ such that the restriction of the endomorphism $f^k$ to any connected component of the attractor is expanding endomorphism. It is also established that if the basic set of endomorphism $f$ has the type $ (2, 0)$ and is a one-dimensional submanifold without boundary then it is a repeller and there is a $ k \geq 1 $ such that the restriction of the endomorphism $f^k$ to any connected component of the basic set is expanding endomorphism.
Mots-clés : axiom $A$, endomorphism
Keywords: basic set.
@article{SVMO_2016_18_2_a2,
     author = {V. Z. Grines and E. D. Kurenkov},
     title = {On structure of one dimensional basic sets of endomorphisms of surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. D. Kurenkov
TI  - On structure of one dimensional basic sets of endomorphisms of surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 16
EP  - 24
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/
LA  - ru
ID  - SVMO_2016_18_2_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. D. Kurenkov
%T On structure of one dimensional basic sets of endomorphisms of surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 16-24
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/
%G ru
%F SVMO_2016_18_2_a2
V. Z. Grines; E. D. Kurenkov. On structure of one dimensional basic sets of endomorphisms of surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/

[1] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tp. mat. in-ta im. V.A. Steklova AN SSSP, 90, 1967, 1-210

[2] D. V. Anosov, Gladkie dinamicheskie sistemy, Mir, 1977 | MR

[3] V. Z. Grines, E. V. Zhuzhoma, “Strukturno ustoichivye diffeomorfizmy s bazisnymi mnozhestvami korazmernosti odin”, Izv. RAN. Ser. matem., 66:2 (2002), 3-66 | DOI | MR | Zbl

[4] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, Regulyarnaya i khaoticheskaya dinamika. Izhevskii institut kompyuternykh issledovanii), M., 2011 | MR

[5] V. Z. Grines, O. V. Pochinka, V. S. Medvedev, Y. A. Levchenko, “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28 (2015), 4081-4102 | DOI | MR | Zbl

[6] G, Ikegami, “Hyperbolic sets and axiom A for endomorphisms”, Proc. of the Institute of the Natural Sciences (Nihon Univ), 26 (1991), 69-86

[7] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, “Faktorial”, 1999 | MR

[8] M. Yu. Lyubich, “Dinamika ratsionalnykh preobrazovanii: topologicheskaya kartina”, UMN, 41:4 (1986), 35-95 | MR

[9] A. G. Maiep, “Gpuboe preobrazovanie okruzhnosti v okruzhnost”, Uch. Zap. GGU, 12 (1939), 215-229

[10] R. Mane, C. Pugh, “Stability of endomorphisms”, Lecture Notes in Math., 468, 1975, 175-184 | DOI | MR | Zbl

[11] Dzh. Milnor, Golomorfnaya dinamika: Vvodnye lektsii, Regulyarnaya i khaoticheskaya dinamika, 2000

[12] Z. Nitecki, “Nonsingular endomorphisms of the circle”, Global Analysis, Proc. Symp. in Pure Math., 14, 1970, 203-220 | DOI | MR | Zbl

[13] R. V. Plykin, “O topologii bazisnykh mnozhestv diffeomorfizmov Smeila”, Matem. sb., 84:2 (1971), 301-312 | MR | Zbl

[14] F. Przytycki, “Anosov endomorphisms”, Stud. Math., 58:3 (1976), 249-285 | DOI | MR | Zbl

[15] F. Przytycki, “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Stud. Math., 60 (1977), 61-77 | DOI | MR | Zbl

[16] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:76 (1967), 747-817 | DOI | MR | Zbl

[17] M. Shub, “Endomorphisms of compact differentiable manifols”, Amer. J. Math, 91 (1969), 175-199 | DOI | MR | Zbl

[18] M. V. Yakobson, “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Matem. Sb., 85 (1970), 163-188