Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2016_18_2_a2, author = {V. Z. Grines and E. D. Kurenkov}, title = {On structure of one dimensional basic sets of endomorphisms of surfaces}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {16--24}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/} }
TY - JOUR AU - V. Z. Grines AU - E. D. Kurenkov TI - On structure of one dimensional basic sets of endomorphisms of surfaces JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2016 SP - 16 EP - 24 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/ LA - ru ID - SVMO_2016_18_2_a2 ER -
V. Z. Grines; E. D. Kurenkov. On structure of one dimensional basic sets of endomorphisms of surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a2/
[1] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tp. mat. in-ta im. V.A. Steklova AN SSSP, 90, 1967, 1-210
[2] D. V. Anosov, Gladkie dinamicheskie sistemy, Mir, 1977 | MR
[3] V. Z. Grines, E. V. Zhuzhoma, “Strukturno ustoichivye diffeomorfizmy s bazisnymi mnozhestvami korazmernosti odin”, Izv. RAN. Ser. matem., 66:2 (2002), 3-66 | DOI | MR | Zbl
[4] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, Regulyarnaya i khaoticheskaya dinamika. Izhevskii institut kompyuternykh issledovanii), M., 2011 | MR
[5] V. Z. Grines, O. V. Pochinka, V. S. Medvedev, Y. A. Levchenko, “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28 (2015), 4081-4102 | DOI | MR | Zbl
[6] G, Ikegami, “Hyperbolic sets and axiom A for endomorphisms”, Proc. of the Institute of the Natural Sciences (Nihon Univ), 26 (1991), 69-86
[7] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, “Faktorial”, 1999 | MR
[8] M. Yu. Lyubich, “Dinamika ratsionalnykh preobrazovanii: topologicheskaya kartina”, UMN, 41:4 (1986), 35-95 | MR
[9] A. G. Maiep, “Gpuboe preobrazovanie okruzhnosti v okruzhnost”, Uch. Zap. GGU, 12 (1939), 215-229
[10] R. Mane, C. Pugh, “Stability of endomorphisms”, Lecture Notes in Math., 468, 1975, 175-184 | DOI | MR | Zbl
[11] Dzh. Milnor, Golomorfnaya dinamika: Vvodnye lektsii, Regulyarnaya i khaoticheskaya dinamika, 2000
[12] Z. Nitecki, “Nonsingular endomorphisms of the circle”, Global Analysis, Proc. Symp. in Pure Math., 14, 1970, 203-220 | DOI | MR | Zbl
[13] R. V. Plykin, “O topologii bazisnykh mnozhestv diffeomorfizmov Smeila”, Matem. sb., 84:2 (1971), 301-312 | MR | Zbl
[14] F. Przytycki, “Anosov endomorphisms”, Stud. Math., 58:3 (1976), 249-285 | DOI | MR | Zbl
[15] F. Przytycki, “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Stud. Math., 60 (1977), 61-77 | DOI | MR | Zbl
[16] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:76 (1967), 747-817 | DOI | MR | Zbl
[17] M. Shub, “Endomorphisms of compact differentiable manifols”, Amer. J. Math, 91 (1969), 175-199 | DOI | MR | Zbl
[18] M. V. Yakobson, “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Matem. Sb., 85 (1970), 163-188