The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis.
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 115-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal solvability of the Cauchy problem in physical variables is proved for the system of long waves in a water rectangular channel with the depth varying along its axis. Most often this system of quasi-linear equations is called as the Shallow water system. The starting system is transformed to the system of symmetric quasi-linear equations with help of Riemann invariants. Although shock waves are expected in this quasi-linear hyperbolic system for a wide class of initial data, we find a sufficient condition on the initial data that guarantees existence of a global classical solution continued from a local solution. The existence of the local solutions, the smoothness of which is not lower than the smoothness of the initial conditions, is also proven. The investigation of the considered problem is based on the method of an additional argument. The proof of the nonlocal solvability relies on original global estimates.
Keywords: long-wave system, method of an additional argument, global estimates.
@article{SVMO_2016_18_2_a13,
     author = {S. N. Alekseenko and M. V. Dontsova},
     title = {The  solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis.},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {115--124},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a13/}
}
TY  - JOUR
AU  - S. N. Alekseenko
AU  - M. V. Dontsova
TI  - The  solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis.
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 115
EP  - 124
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a13/
LA  - ru
ID  - SVMO_2016_18_2_a13
ER  - 
%0 Journal Article
%A S. N. Alekseenko
%A M. V. Dontsova
%T The  solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis.
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 115-124
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a13/
%G ru
%F SVMO_2016_18_2_a13
S. N. Alekseenko; M. V. Dontsova. The  solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis.. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 115-124. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a13/

[1] Pelinovskii E. N., Gidrodinamika voln tsunami, Institut prikladnoi fiziki RAN, Nizhnii Novgorod, 1996

[2] Rozhdestvenskii B. L., Yanenko N. I., Sistemy kvazilineinykh uravnenii i ikh prilozheniya v gazovoi dinamike, Nauka, M., 1978 | MR

[3] Imanaliev M. I., Alekseenko S. N., “K voprosu suschestvovaniya gladkogo ogranichennogo resheniya dlya sistemy dvukh nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Dokl. RAN, 379:1 (2001), 16–21 | MR | Zbl

[4] Imanaliev M. I., Pankov P. S., Alekseenko S. N., “Metod dopolnitelnogo argumenta”, Vestnik KazNU. Seriya “Matematika, mekhanika, informatika”, 2006, no. 1, Spets. vypusk, 60–64

[5] Alekseenko S. N., Dontsova M. V., “Issledovanie razreshimosti sistemy uravnenii, opisyvayuschei raspredelenie elektronov v elektricheskom pole spraita”, Matem. vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 14 (2012), 34–41

[6] Alekseenko S. N., Dontsova M. V., “Lokalnoe suschestvovanie ogranichennogo resheniya sistemy uravnenii, opisyvayuschei raspredelenie elektronov v slaboionizirovannoi plazme v elektricheskom pole spraita”, Matem. vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 15 (2013), 52–59

[7] Alekseenko S. N., Shemyakina T. A., Dontsova M. V., “Usloviya nelokalnoi razreshimosti sistem differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko–matematicheskie nauki, 2013, no. 3 (177), 190–201