Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 85-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of heat transfer problem in a long rectangular channel has been found using the kinetic approach. In channel the constant temperature gradient along the axis of symmetry is supported. For the basic equation that describes the kinetics of the process Williams kinetic equation is used. For the boundary condition on the channel walls the model of diffuse reflection is used. The deviation from the state of rarefied gas equilibrium is assumed to be small. It allows to consider the solution of the problem in the linearized form. The heat flow vector profile is constructed in the channel and the heat flow through the channel cross-section is calculated, depending on the ratio lengths of rectangular cross-section and values of the Knudsen number. The results obtained upon transition to the free molecular regime and the hydrodynamic regime of the gas flow are analyzed.
Keywords: Boltzmann kinetic equation, Williams equation, model of diffuse reflection, analytical solutions, Knudsen number.
@article{SVMO_2016_18_2_a10,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical modeling of the heat transfer process in a rectangular channel depending on {Knudsen} number},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a10/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 85
EP  - 93
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a10/
LA  - ru
ID  - SVMO_2016_18_2_a10
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 85-93
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a10/
%G ru
%F SVMO_2016_18_2_a10
O. V. Germider; V. N. Popov. Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 85-93. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a10/

[1] F. M. Sharipov, V. D. Seleznev, Dvizhenie razrezhennykh gazov v kanalakh i mikrokanalakh, UrO RAN, Ekaterinburg, 2008, 230 pp.

[2] Yu. A. Koshmarov, Yu. A. Ryzhov, Prikladnaya dinamika razrezhennogo gaza, Mashinostroenie, Moskva, 1997, 184 pp.

[3] V. A. Titarev, E. M. Shakhov, “Kineticheskii analiz izotermicheskogo techeniya v dlinnom mikrokanale pryamougolnogo poperechnogo secheniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:7 (2010), 1285–1302 | MR | Zbl

[4] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Vychislenie potokov massy gaza i tepla v kanale pryamougolnogo secheniya v svobodnomolekulyarnom rezhime”, Zhurnal tekhnicheskoi fiziki, 86:6 (2016), 37–41

[5] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Vychislenie v ramkakh kineticheskogo podkhoda potoka tepla v dlinnom kanale postoyannogo pryamougolnogo poperechnogo secheniya”, Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-matematika, 2015, no. 2, 96–106

[6] S. Naris, D. Valougeorgis, “Rarefied gas flow in a triangular duct based on a boundary fitted lattice”, European Journal of Mechanics B/ Fluids, 27 (2008), 810–822 | DOI | MR | Zbl

[7] C. E. Siewert, D. Valougeorgis, “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, Journal of Quantitative Spectroscopy Radiative Transfer, 72 (2002), 531–550 | DOI

[8] P. Taheri, M. Bahrami, “Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels”, Physical Review, 86 (2012), 1–9

[9] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI

[10] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Matematicheskoe modelirovanie protsessa teploperenosa v dlinnom tsilindricheskom kanale”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 17:1 (2015), 22–29

[11] V. A. Titarev, E. M. Shakhov, “Chislennyi analiz vintovogo techeniya Kuetta razrezhennogo gaza mezhdu koaksialnymi tsilindrami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:3 (2006), 527–535 | MR | Zbl

[12] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics B/Fluids, 27 (2008), 335-345 | DOI | MR | Zbl

[13] K. Cherchinyani, Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973, 245 pp. | MR

[14] S. V. Gulakova, V. N. Popov, A. A. Yushkanov, “Analiticheskoe reshenie uravneniya Vilyamsa v zadache o techenii Puazeilya s ispolzovaniem zerkalno-diffuznoi modeli vzaimodeistviya molekul gaza so stenkami kanala”, Zhurnal tekhnicheskoi fiziki, 85:4 (2015), 1–6

[15] M. N. Kogan, Dinamika razrezhennogo gaza. Kineticheskaya teoriya, Nauka, M., 1967, 440 pp.

[16] M. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR