Heteroclinic Curves of Gradient-like Diffeomorphsms and the Topology of Ambient Manifolds
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 11-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the study of deterministic processes described by the Morse-Smale systems noncompact heteroclinic curves play special role. These curves belong to intersections of stable and unstable manifolds of saddle periodic points. In particular, these curves are mathematical models of magnetic separators in the plasma field. We consider the class of gradient-like diffeomorphisms on three-dimensional manifolds such that their periodic points and a part of their invariant manifolds form disjoint tamely embedded surfaces. We prove that the number of the surfaces is finite and all of them have the same genus. The main result is presentation of the exact lower estimation for the number of heteroclinic curves of any diffeomorphism from considered class. This estimation is defined by genus of surfaces and their number. In addition the paper describes the topological type of manifolds which admit considered diffeomorphisms.
Keywords: structurally stable dynamical systems, heteroclinic curves, mapping torus.
@article{SVMO_2016_18_2_a1,
     author = {V. Z. Grines and E. Ya. Gurevich and O. V. Pochinka},
     title = {Heteroclinic {Curves} of {Gradient-like} {Diffeomorphsms} and the  {Topology} of {Ambient} {Manifolds}},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--15},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - O. V. Pochinka
TI  - Heteroclinic Curves of Gradient-like Diffeomorphsms and the  Topology of Ambient Manifolds
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2016
SP  - 11
EP  - 15
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a1/
LA  - ru
ID  - SVMO_2016_18_2_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A O. V. Pochinka
%T Heteroclinic Curves of Gradient-like Diffeomorphsms and the  Topology of Ambient Manifolds
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2016
%P 11-15
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a1/
%G ru
%F SVMO_2016_18_2_a1
V. Z. Grines; E. Ya. Gurevich; O. V. Pochinka. Heteroclinic Curves of Gradient-like Diffeomorphsms and the  Topology of Ambient Manifolds. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 18 (2016) no. 2, pp. 11-15. http://geodesic.mathdoc.fr/item/SVMO_2016_18_2_a1/

[1] A. A. Andponov, L. C. Pontpyagin, “Gpubye sistemy”, Dokl. AN SSSP, 14:5 (1937), 247-250

[2] Bonatti C. , Grines V., Medvedev V., Pecou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology and its Applications, 117 (2002), 335 – 344 | DOI | MR | Zbl

[3] Grines V., Zhuzhoma E. V., Pochinka O., Medvedev T. V., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D: Nonlinear Phenomena, 294 (2015), 1-5 | DOI | MR | Zbl

[4] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “Novye sootnosheniya dlya sistem Morsa–Smeila s trivialno vlozhennymi odnomernymi separatrisami”, Matem. sb., 194:7 (2003), 25–56 | DOI | MR | Zbl

[5] Brown Morton, “Locally flat imbeddings of topological manifolds”, Annals of Mathematics, Second series, 75 (1962), 331-341 | DOI | MR | Zbl

[6] Grines V. Z, Gurevich E. Ya., Zhuzhoma E. V., Zinina S. Kh., “Geteroklinicheskie krivye diffeomorfizmov Morsa–Smeila i separatory v magnitnom pole plazmy”, Nelineinaya dinamika, 10:4 (2014), 427–438 | Zbl

[7] M.Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101-120 | DOI | MR | Zbl

[8] E.R. Priest, Solar Magneto-Hydrodynamics, D. Reidel, Holland, 1982

[9] E. Priest, T. Forbes, Magnetic Reconnection. MHD Theory and Applications, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[10] Smale S., “On Gradient Dynamical Systems”, Annals of Math, 1:1 (1961), 199–206 | DOI | MR