Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations
Matematičeskie zametki SVFU, Tome 30 (2023) no. 4, pp. 12-23
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the solvability in anisotropic Sobolev spaces of nonlocal boundary problems for the third order quasi-parabolic equations with an integrally-disturbed Samarskii condition. A uniqueness and existence theorem is proved for regular solutions (i. e. the solutions that have all generalized derivatives that were used in equation).
Mots-clés :
quasi-parabolic equations, existence
Keywords: nonlocal problems, Samarsky condition, regular solution, uniqueness.
Keywords: nonlocal problems, Samarsky condition, regular solution, uniqueness.
@article{SVFU_2023_30_4_a1,
author = {A. I. Kozhanov and D. S. Khromchenko},
title = {Nonlocal problems with an integrally-disturbed {A.} {A.} {Samarskii} condition for third order quasi-parabolic equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {12--23},
year = {2023},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_4_a1/}
}
TY - JOUR AU - A. I. Kozhanov AU - D. S. Khromchenko TI - Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations JO - Matematičeskie zametki SVFU PY - 2023 SP - 12 EP - 23 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/SVFU_2023_30_4_a1/ LA - ru ID - SVFU_2023_30_4_a1 ER -
%0 Journal Article %A A. I. Kozhanov %A D. S. Khromchenko %T Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations %J Matematičeskie zametki SVFU %D 2023 %P 12-23 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/SVFU_2023_30_4_a1/ %G ru %F SVFU_2023_30_4_a1
A. I. Kozhanov; D. S. Khromchenko. Nonlocal problems with an integrally-disturbed A. A. Samarskii condition for third order quasi-parabolic equations. Matematičeskie zametki SVFU, Tome 30 (2023) no. 4, pp. 12-23. http://geodesic.mathdoc.fr/item/SVFU_2023_30_4_a1/