Solvability of the linear inverse problem for the pseudoparabolic equation
Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 58-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the solvability of inverse problems of determination, along with the solution $u(x, t)$ to the pseudoparabolic equation, of the unknown source function. Similar problems are considered when studying wave processes, filtration in porous media, and heat transfer processes. A theorem for the existence of a regular solution is proved. Inverse problems for pseudoparabolic equations with an unknown external influence depending on $x$ and a final redefinition have not been considered previously.
Keywords: inverse problem, final redefinition
Mots-clés : pseudoparabolic equation, existence.
@article{SVFU_2023_30_3_a4,
     author = {O. Yu. Nikolaev},
     title = {Solvability of the linear inverse problem for the pseudoparabolic equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {58--66},
     year = {2023},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a4/}
}
TY  - JOUR
AU  - O. Yu. Nikolaev
TI  - Solvability of the linear inverse problem for the pseudoparabolic equation
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 58
EP  - 66
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a4/
LA  - ru
ID  - SVFU_2023_30_3_a4
ER  - 
%0 Journal Article
%A O. Yu. Nikolaev
%T Solvability of the linear inverse problem for the pseudoparabolic equation
%J Matematičeskie zametki SVFU
%D 2023
%P 58-66
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a4/
%G ru
%F SVFU_2023_30_3_a4
O. Yu. Nikolaev. Solvability of the linear inverse problem for the pseudoparabolic equation. Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 58-66. http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a4/