Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body
Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 38-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear mathematical model describing equilibrium of a two-dimensional elastic body with two thin rigid inclusions is investigated. It is assumed that two rigid inclusions have one common connection point. Moreover, a connection between two inclusions at a given point is characterized by a positive damage parameter. Rectilinear inclusions are located at a given angle to each other in an initial state. Nonlinear Signorini conditions are imposed, which describe the contact with the obstacle, as well as a homogeneous Dirichlet condition is set on corresponding parts of the outer boundary of the body. An optimal control problem for the parameter that specifies the angle between inclusions is formulated. The quality functional is given by an arbitrary continuous functional defined on the Sobolev space. The solvability of the optimal control problem is proved. A continuous dependence of solutions on varying angle parameter between the inclusions is established.
Keywords: variational problem, rigid inclusion, non-penetration, optimal control problem.
@article{SVFU_2023_30_3_a3,
     author = {N. P. Lazarev and N. A. Romanova},
     title = {Optimal control of the angle between two rigid inclusions in an inhomogeneous {2D} body},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {38--57},
     year = {2023},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a3/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - N. A. Romanova
TI  - Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 38
EP  - 57
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a3/
LA  - ru
ID  - SVFU_2023_30_3_a3
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A N. A. Romanova
%T Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body
%J Matematičeskie zametki SVFU
%D 2023
%P 38-57
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a3/
%G ru
%F SVFU_2023_30_3_a3
N. P. Lazarev; N. A. Romanova. Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body. Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 38-57. http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a3/