Cubic Darboux systems with a non-elementary singular point at the Poincare equator
Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 27-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the global behavior of the trajectories of the polynomial system $x = x - x^2y + pxy^2 + y^3, y = y + py^3$, $p \in R$. Our study is related to the paper arXiv:2106/07516v2 [math.DS].
Keywords: polynomial systems, singular points, Poincare equator, rational integrals.
Mots-clés : phase portraits
@article{SVFU_2023_30_3_a2,
     author = {E. P. Volokitin},
     title = {Cubic {Darboux} systems with a non-elementary singular point at the {Poincare} equator},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {27--37},
     year = {2023},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/}
}
TY  - JOUR
AU  - E. P. Volokitin
TI  - Cubic Darboux systems with a non-elementary singular point at the Poincare equator
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 27
EP  - 37
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/
LA  - ru
ID  - SVFU_2023_30_3_a2
ER  - 
%0 Journal Article
%A E. P. Volokitin
%T Cubic Darboux systems with a non-elementary singular point at the Poincare equator
%J Matematičeskie zametki SVFU
%D 2023
%P 27-37
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/
%G ru
%F SVFU_2023_30_3_a2
E. P. Volokitin. Cubic Darboux systems with a non-elementary singular point at the Poincare equator. Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 27-37. http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/