Cubic Darboux systems with a non-elementary singular point at the Poincare equator
Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 27-37
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the global behavior of the trajectories of the polynomial system $x = x - x^2y + pxy^2 + y^3, y = y + py^3$, $p \in R$. Our study is related to the paper arXiv:2106/07516v2 [math.DS].
Keywords:
polynomial systems, singular points, Poincare equator, rational integrals.
Mots-clés : phase portraits
Mots-clés : phase portraits
@article{SVFU_2023_30_3_a2,
author = {E. P. Volokitin},
title = {Cubic {Darboux} systems with a non-elementary singular point at the {Poincare} equator},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {27--37},
year = {2023},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/}
}
E. P. Volokitin. Cubic Darboux systems with a non-elementary singular point at the Poincare equator. Matematičeskie zametki SVFU, Tome 30 (2023) no. 3, pp. 27-37. http://geodesic.mathdoc.fr/item/SVFU_2023_30_3_a2/