Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions
Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 92-100
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we obtain sharp bounds in the Zalcman conjecture for the initial coe cients, the second Hankel determinant $H_{2,2}(f) = a_2a_4 - a^2_3$ and an upper bound for the second Hankel determinant $H_{2,3}(f) = a_3a_5-a_2$ for the functions belonging to a certain subclass of analytic functions. The practical tools applied in the derivation of our main results are the coe cient inequalities of the Caratheodory class $P$.
Keywords:
analytic function, upper bound, the Zalcman conjecture, univalent function, Caratheodory function.
@article{SVFU_2023_30_2_a6,
author = {N. Vani and D. Vamshee Krishna and B. Rath},
title = {Sharp bounds associated with the {Zalcman} conjecture for the initial coefficients and second {Hankel} determinants for certain subclass of analytic functions},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {92--100},
year = {2023},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a6/}
}
TY - JOUR AU - N. Vani AU - D. Vamshee Krishna AU - B. Rath TI - Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions JO - Matematičeskie zametki SVFU PY - 2023 SP - 92 EP - 100 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a6/ LA - ru ID - SVFU_2023_30_2_a6 ER -
%0 Journal Article %A N. Vani %A D. Vamshee Krishna %A B. Rath %T Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions %J Matematičeskie zametki SVFU %D 2023 %P 92-100 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a6/ %G ru %F SVFU_2023_30_2_a6
N. Vani; D. Vamshee Krishna; B. Rath. Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions. Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 92-100. http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a6/