Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions
Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 75-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for a loaded modi ed Korteweg-de Vries equation with a self-consistent source. The evolution of the scattering data of the Dirac operator, whose potential is a solution of the loaded modi ed Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing functions, is derived. A specific example is given to illustrate the application of the obtained results.
Keywords: loaded modified Korteweg–de Vries equation, self-consistent source, scattering data.
Mots-clés : Jost solutions
@article{SVFU_2023_30_2_a5,
     author = {U.A. Hoitmetov and Sh. K. Sobirov},
     title = {Integration of the loaded {MKDV} equation with a source in the class of rapidly decreasing functions},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {75--91},
     year = {2023},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a5/}
}
TY  - JOUR
AU  - U.A. Hoitmetov
AU  - Sh. K. Sobirov
TI  - Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 75
EP  - 91
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a5/
LA  - ru
ID  - SVFU_2023_30_2_a5
ER  - 
%0 Journal Article
%A U.A. Hoitmetov
%A Sh. K. Sobirov
%T Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions
%J Matematičeskie zametki SVFU
%D 2023
%P 75-91
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a5/
%G ru
%F SVFU_2023_30_2_a5
U.A. Hoitmetov; Sh. K. Sobirov. Integration of the loaded MKDV equation with a source in the class of rapidly decreasing functions. Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 75-91. http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a5/