On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media
Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 56-74
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine the question of regular solvability in Sobolev spaces of parabolic inverse coefficient problems in stratified media with conjugation conditions of the diffraction type. A solution has all generalized the derivatives occurring in the equation summable with some power. The over determination conditions are the values of the solution at some collection of points lying inside the domain. The proof is based on a priori estimates and the fixed point theorem.
Mots-clés :
parabolic equation, existence
Keywords: inverse problem, initial-boundary value problem, uniqueness.
Keywords: inverse problem, initial-boundary value problem, uniqueness.
@article{SVFU_2023_30_2_a4,
author = {S. G. Pyatkov and O. I. Sokolkov},
title = {On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {56--74},
year = {2023},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a4/}
}
TY - JOUR AU - S. G. Pyatkov AU - O. I. Sokolkov TI - On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media JO - Matematičeskie zametki SVFU PY - 2023 SP - 56 EP - 74 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a4/ LA - ru ID - SVFU_2023_30_2_a4 ER -
%0 Journal Article %A S. G. Pyatkov %A O. I. Sokolkov %T On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media %J Matematičeskie zametki SVFU %D 2023 %P 56-74 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a4/ %G ru %F SVFU_2023_30_2_a4
S. G. Pyatkov; O. I. Sokolkov. On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media. Matematičeskie zametki SVFU, Tome 30 (2023) no. 2, pp. 56-74. http://geodesic.mathdoc.fr/item/SVFU_2023_30_2_a4/