Numerical modeling of the seismic waves propagation in a porous medium from singular sources
Matematičeskie zametki SVFU, Tome 30 (2023) no. 1, pp. 89-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear two-dimensional problem in the form of dynamic equations of porous media for the components of velocities, stresses and pressure is considered. The dynamic equations are based on conservation laws and consistent with the thermodynamics conditions. The medium is considered to be ideal (there is no energy loss in the system)isotropic and two-dimensional inhomogeneous with respect to space. For the numerical solution of the problem posed, the method of integrating the integral Laguerre transform with respect to time with finite-difference approximation in spatial coordinates is used. The solution algorithm employed makes it possible to efficiently carry out simulations in a complex porous medium and to study the wave effects arising in such media.
Mots-clés : Laguerre transform
Keywords: porous medium, numerical simulation, wave field, difference scheme.
@article{SVFU_2023_30_1_a6,
     author = {Kh. Kh. Imomnazarov and A. A. Mikhailov and A. T. Omonov and S. Tordeux},
     title = {Numerical modeling of the seismic waves propagation in a porous medium from singular sources},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {89--100},
     year = {2023},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a6/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - A. A. Mikhailov
AU  - A. T. Omonov
AU  - S. Tordeux
TI  - Numerical modeling of the seismic waves propagation in a porous medium from singular sources
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 89
EP  - 100
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a6/
LA  - ru
ID  - SVFU_2023_30_1_a6
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A A. A. Mikhailov
%A A. T. Omonov
%A S. Tordeux
%T Numerical modeling of the seismic waves propagation in a porous medium from singular sources
%J Matematičeskie zametki SVFU
%D 2023
%P 89-100
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a6/
%G ru
%F SVFU_2023_30_1_a6
Kh. Kh. Imomnazarov; A. A. Mikhailov; A. T. Omonov; S. Tordeux. Numerical modeling of the seismic waves propagation in a porous medium from singular sources. Matematičeskie zametki SVFU, Tome 30 (2023) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a6/