An inverse problem of chemical kinetics in a nondegenerate case
Matematičeskie zametki SVFU, Tome 30 (2023) no. 1, pp. 63-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article contains a review of recent results on solving the direct and inverse problems related to a singularly perturbed system of ordinary differential equations which describe a process in chemical kinetics. We also extend the class of problems under study by considering polynomials of arbitrary degree as the right-hand parts of the differential equations in the $\varepsilon \ne 0$. Moreover, an iteration algorithm is proposed of finding an approximate solution to the inverse problem in the nondegenerate $(\varepsilon \ne 0)$ for arbitrary degree. The theorem is proven on the convergence of the algorithm suggested. The proof is based on the contraction mapping principle (the Banach fixed-point theorem).
Keywords: integral manifold, slow surface, singularly perturbed system, small parameter, inverse problem
Mots-clés : ODE.
@article{SVFU_2023_30_1_a4,
     author = {L. I. Kononenko},
     title = {An inverse problem of chemical kinetics in a nondegenerate case},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {63--71},
     year = {2023},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a4/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - An inverse problem of chemical kinetics in a nondegenerate case
JO  - Matematičeskie zametki SVFU
PY  - 2023
SP  - 63
EP  - 71
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a4/
LA  - ru
ID  - SVFU_2023_30_1_a4
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T An inverse problem of chemical kinetics in a nondegenerate case
%J Matematičeskie zametki SVFU
%D 2023
%P 63-71
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a4/
%G ru
%F SVFU_2023_30_1_a4
L. I. Kononenko. An inverse problem of chemical kinetics in a nondegenerate case. Matematičeskie zametki SVFU, Tome 30 (2023) no. 1, pp. 63-71. http://geodesic.mathdoc.fr/item/SVFU_2023_30_1_a4/