On some new uniform estimates and maximal theorems for $H^p$ spaces
Matematičeskie zametki SVFU, Tome 29 (2022) no. 4, pp. 72-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain some new uniform estimates and maximal theorems in classical Hardy spaces in the unit disk related with the Bergman projection, thus extending some previously well-known inequalities on Hardy spaces.
Keywords: Bergman projection, Hardy space, unit disk, maximal theorem, analytic function.
Mots-clés : uniformestimate
@article{SVFU_2022_29_4_a5,
     author = {R. F. Shamoyan},
     title = {On some new uniform estimates and maximal theorems for $H^p$ spaces},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {72--76},
     year = {2022},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a5/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - On some new uniform estimates and maximal theorems for $H^p$ spaces
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 72
EP  - 76
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a5/
LA  - ru
ID  - SVFU_2022_29_4_a5
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T On some new uniform estimates and maximal theorems for $H^p$ spaces
%J Matematičeskie zametki SVFU
%D 2022
%P 72-76
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a5/
%G ru
%F SVFU_2022_29_4_a5
R. F. Shamoyan. On some new uniform estimates and maximal theorems for $H^p$ spaces. Matematičeskie zametki SVFU, Tome 29 (2022) no. 4, pp. 72-76. http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a5/