Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations
Matematičeskie zametki SVFU, Tome 29 (2022) no. 4, pp. 11-20
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of Hopf-type equations is obtained. The Cauchy problem for a one-dimensional system of equations of the Hopf type which arises in two-velocity hydrodynamics is considered. The existence and uniqueness of a solution to the Cauchy problem for the one-dimensional system of the Hopf type is proved by the method of weak approximation.
Keywords:
two-velocity hydrodynamics, Hopf-type system, weak approximation method
Mots-clés : friction coefficient.
Mots-clés : friction coefficient.
@article{SVFU_2022_29_4_a1,
author = {B. Kh. Imomnazarov and U. {\CYRK}. Turdiev and D. {\CYRA}. Erkinova},
title = {Weak approximation method for the {Cauchy} problem for a one-dimensional system of {Hopf-type} equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {11--20},
year = {2022},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a1/}
}
TY - JOUR AU - B. Kh. Imomnazarov AU - U. К. Turdiev AU - D. А. Erkinova TI - Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations JO - Matematičeskie zametki SVFU PY - 2022 SP - 11 EP - 20 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a1/ LA - ru ID - SVFU_2022_29_4_a1 ER -
%0 Journal Article %A B. Kh. Imomnazarov %A U. К. Turdiev %A D. А. Erkinova %T Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations %J Matematičeskie zametki SVFU %D 2022 %P 11-20 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a1/ %G ru %F SVFU_2022_29_4_a1
B. Kh. Imomnazarov; U. К. Turdiev; D. А. Erkinova. Weak approximation method for the Cauchy problem for a one-dimensional system of Hopf-type equations. Matematičeskie zametki SVFU, Tome 29 (2022) no. 4, pp. 11-20. http://geodesic.mathdoc.fr/item/SVFU_2022_29_4_a1/