Estimates for solutions for one model of population dynamics with delay
Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 80-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of the single population dynamics described by a delay differential equation. The asymptotic behavior of solutions for this model is studied in cases of asymptotic stability of equilibrium points corresponding to the complete extinction of the population and to the constant positive population size. In each case, Lyapunov-Krasovskii functionals are constructed, with the help of which estimates characterizing the rate of extinction of the population and the rate of stabilization of the population to a constant value are obtained.
Keywords: population dynamics, delay differential equation, equilibrium point, asymptotic stability, estimates for solutions, Lyapunov–Krasovskii functional.
@article{SVFU_2022_29_3_a6,
     author = {M. A. Skvortsova},
     title = {Estimates for solutions for one model of population dynamics with delay},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {80--92},
     year = {2022},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a6/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Estimates for solutions for one model of population dynamics with delay
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 80
EP  - 92
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a6/
LA  - ru
ID  - SVFU_2022_29_3_a6
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Estimates for solutions for one model of population dynamics with delay
%J Matematičeskie zametki SVFU
%D 2022
%P 80-92
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a6/
%G ru
%F SVFU_2022_29_3_a6
M. A. Skvortsova. Estimates for solutions for one model of population dynamics with delay. Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 80-92. http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a6/