Inverse problems of restoring parameters in parabolic and hyperbolic equations
Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 57-69
Cet article a éte moissonné depuis la source Math-Net.Ru
The work is devoted to the study of the solvability of new inverse problems of determining, together with the solution of parabolic or hyperbolic equations, a certain coefficient of the equation itself. A feature of the problems under study is, firstly, that the unknown coefficient is sought in the class of constant functions and, secondly, that a new, previously unused redefinition condition is applied. For the problems under study, existence theorems are proved for regular solutions, which are the solutions having all the derivatives generalized in the Sobolev sense entering the corresponding equation.
Mots-clés :
parabolic equation, existence.
Keywords: hyperbolic equation, inverse problem, regular solution
Keywords: hyperbolic equation, inverse problem, regular solution
@article{SVFU_2022_29_3_a4,
author = {A. I. Kozhanov and L. A. Telesheva},
title = {Inverse problems of restoring parameters in parabolic and hyperbolic equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {57--69},
year = {2022},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a4/}
}
TY - JOUR AU - A. I. Kozhanov AU - L. A. Telesheva TI - Inverse problems of restoring parameters in parabolic and hyperbolic equations JO - Matematičeskie zametki SVFU PY - 2022 SP - 57 EP - 69 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a4/ LA - ru ID - SVFU_2022_29_3_a4 ER -
A. I. Kozhanov; L. A. Telesheva. Inverse problems of restoring parameters in parabolic and hyperbolic equations. Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 57-69. http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a4/