On solvability of the first boundary value problem for an odd order equation with changing time direction
Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 32-41
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the generalized and regular solvability of the first boundary value problem for an odd order equation with changing time direction. Using the nonstationary Galerkin method and the regularization method, the existence of a generalized solution and the unique regular solvability of the considered boundary value problem are proved. The error estimate for the nonstationary Galerkin method is also established.
Keywords:
equation with changing time direction, first boundary value problem, non-stationary Galerkin method, approximate solutions, inequality, estimate.
@article{SVFU_2022_29_3_a2,
author = {I. E. Egorov and E. S. Efimova},
title = {On solvability of the first boundary value problem for an odd order equation with changing time direction},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {32--41},
year = {2022},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a2/}
}
TY - JOUR AU - I. E. Egorov AU - E. S. Efimova TI - On solvability of the first boundary value problem for an odd order equation with changing time direction JO - Matematičeskie zametki SVFU PY - 2022 SP - 32 EP - 41 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a2/ LA - ru ID - SVFU_2022_29_3_a2 ER -
%0 Journal Article %A I. E. Egorov %A E. S. Efimova %T On solvability of the first boundary value problem for an odd order equation with changing time direction %J Matematičeskie zametki SVFU %D 2022 %P 32-41 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a2/ %G ru %F SVFU_2022_29_3_a2
I. E. Egorov; E. S. Efimova. On solvability of the first boundary value problem for an odd order equation with changing time direction. Matematičeskie zametki SVFU, Tome 29 (2022) no. 3, pp. 32-41. http://geodesic.mathdoc.fr/item/SVFU_2022_29_3_a2/