On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness
Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 88-100
Cet article a éte moissonné depuis la source Math-Net.Ru
In [1] we showed the global-in-time solvability of the initial-boundary value problem for the non-conserved phase-field model proposed by Penrose and Fife [2, 3] under the correct form of flux boundary condition for the temperature field in higher space dimensions. In this paper we discuss the uniform boundedness up to the infinite time of its solution in Sobolev-Slobodetskiĭ spaces.
Keywords:
non-conserved phase-field equations, Penrose–Fife type, flux boundary condition, uniform boundedness of strong solution in Sobolev–Slobodetskiĭ spaces.
@article{SVFU_2022_29_2_a7,
author = {A. Tani},
title = {On phase-field equations of {Penrose-Fife} type with non-conserved order parameter under flux boundary condition. {II:} {Uniform} boundedness},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {88--100},
year = {2022},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a7/}
}
TY - JOUR AU - A. Tani TI - On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness JO - Matematičeskie zametki SVFU PY - 2022 SP - 88 EP - 100 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a7/ LA - ru ID - SVFU_2022_29_2_a7 ER -
%0 Journal Article %A A. Tani %T On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness %J Matematičeskie zametki SVFU %D 2022 %P 88-100 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a7/ %G ru %F SVFU_2022_29_2_a7
A. Tani. On phase-field equations of Penrose-Fife type with non-conserved order parameter under flux boundary condition. II: Uniform boundedness. Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 88-100. http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a7/