Limit cycles and phase portrait for a class of differential systems
Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 72-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an explicit expression of invariant algebraic curves for a class of polynomial differential systems and an explicit expression for its first integral. Moreover, we determine suficient conditions for these systems to possess a limit cycle, which can be expressed by an explicit formula. Concrete examples exhibiting the applicability of our results are introduced.
Keywords: Hilbert 16th problem, dynamical system, limit cycle, invariant algebraic curve, first integral.
@article{SVFU_2022_29_2_a5,
     author = {R. Boukoucha},
     title = {Limit cycles and phase portrait for a class of differential systems},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {72--81},
     year = {2022},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a5/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - Limit cycles and phase portrait for a class of differential systems
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 72
EP  - 81
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a5/
LA  - ru
ID  - SVFU_2022_29_2_a5
ER  - 
%0 Journal Article
%A R. Boukoucha
%T Limit cycles and phase portrait for a class of differential systems
%J Matematičeskie zametki SVFU
%D 2022
%P 72-81
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a5/
%G ru
%F SVFU_2022_29_2_a5
R. Boukoucha. Limit cycles and phase portrait for a class of differential systems. Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 72-81. http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a5/