On an inverse dynamic poroelasticity problem for a layered medium
Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 19-30
Cet article a éte moissonné depuis la source Math-Net.Ru
An inverse dynamic problem of poroelasticity of piecewise-smooth shear coeficient with respect to additional information about vibrations of free surface points is considered. The Gupill hypothesis of equal propagation time of perturbations through the layers of a porous medium saturated with liquid is assumed fulfilled. Recursive formulas for recovering the unknown shift coeficient are obtained.
Keywords:
seismic waves, porosity equations, shear modulus, half-space
Mots-clés : Darcy coefficient, viscous liquid.
Mots-clés : Darcy coefficient, viscous liquid.
@article{SVFU_2022_29_2_a1,
author = {Kh. Kh. Imomnazarov and L. Kh. Khujaev and Z. Sh. Yangiboev},
title = {On an inverse dynamic poroelasticity problem for a layered medium},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {19--30},
year = {2022},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/}
}
TY - JOUR AU - Kh. Kh. Imomnazarov AU - L. Kh. Khujaev AU - Z. Sh. Yangiboev TI - On an inverse dynamic poroelasticity problem for a layered medium JO - Matematičeskie zametki SVFU PY - 2022 SP - 19 EP - 30 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/ LA - ru ID - SVFU_2022_29_2_a1 ER -
Kh. Kh. Imomnazarov; L. Kh. Khujaev; Z. Sh. Yangiboev. On an inverse dynamic poroelasticity problem for a layered medium. Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 19-30. http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/