On an inverse dynamic poroelasticity problem for a layered medium
Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 19-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse dynamic problem of poroelasticity of piecewise-smooth shear coeficient with respect to additional information about vibrations of free surface points is considered. The Gupill hypothesis of equal propagation time of perturbations through the layers of a porous medium saturated with liquid is assumed fulfilled. Recursive formulas for recovering the unknown shift coeficient are obtained.
Keywords: seismic waves, porosity equations, shear modulus, half-space
Mots-clés : Darcy coefficient, viscous liquid.
@article{SVFU_2022_29_2_a1,
     author = {Kh. Kh. Imomnazarov and L. Kh. Khujaev and Z. Sh. Yangiboev},
     title = {On an inverse dynamic poroelasticity problem for a layered medium},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {19--30},
     year = {2022},
     volume = {29},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - L. Kh. Khujaev
AU  - Z. Sh. Yangiboev
TI  - On an inverse dynamic poroelasticity problem for a layered medium
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 19
EP  - 30
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/
LA  - ru
ID  - SVFU_2022_29_2_a1
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A L. Kh. Khujaev
%A Z. Sh. Yangiboev
%T On an inverse dynamic poroelasticity problem for a layered medium
%J Matematičeskie zametki SVFU
%D 2022
%P 19-30
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/
%G ru
%F SVFU_2022_29_2_a1
Kh. Kh. Imomnazarov; L. Kh. Khujaev; Z. Sh. Yangiboev. On an inverse dynamic poroelasticity problem for a layered medium. Matematičeskie zametki SVFU, Tome 29 (2022) no. 2, pp. 19-30. http://geodesic.mathdoc.fr/item/SVFU_2022_29_2_a1/