Curves in the geometry of a special extension of Euclidean space
Matematičeskie zametki SVFU, Tome 29 (2022) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In modern mathematics, the use of geometries with a maximum group of motions is of particular importance. There are many classifications of such geometries, one of which contains the geometry of a special extension of Euclidean space. This geometry belongs to the family of geometries with a degenerate Riemannian metric, but at the same time admits a group of motions of maximum dimension. This paper investigates the metric properties of the geometry of a special extension of Euclidean space. The concept of the length of a curve in such a geometry is introduced. The curve of the minimum length is found. It is proved that a segment in a horizontal hyperplane has the minimum length. The Christoffel symbols of the geometry of a special extension of Euclidean space are calculated.
Keywords: geometry of a special extension of Euclidean space, degenerate Riemannian metric, curve length.
@article{SVFU_2022_29_1_a0,
     author = {V. A. Kyrov},
     title = {Curves in the geometry of a special extension of {Euclidean} space},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {3--12},
     year = {2022},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2022_29_1_a0/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Curves in the geometry of a special extension of Euclidean space
JO  - Matematičeskie zametki SVFU
PY  - 2022
SP  - 3
EP  - 12
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2022_29_1_a0/
LA  - ru
ID  - SVFU_2022_29_1_a0
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Curves in the geometry of a special extension of Euclidean space
%J Matematičeskie zametki SVFU
%D 2022
%P 3-12
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2022_29_1_a0/
%G ru
%F SVFU_2022_29_1_a0
V. A. Kyrov. Curves in the geometry of a special extension of Euclidean space. Matematičeskie zametki SVFU, Tome 29 (2022) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/SVFU_2022_29_1_a0/