The dirichlet problem for the higher order composite type equations with discontinuous coefficients
Matematičeskie zametki SVFU, Tome 28 (2021) no. 4, pp. 17-29
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the Dirichlet problem for the composite type differential equations $$D_t\big[(-1)^pD^{2p+1}_tu-h(x)u_{xx}\big]+a(x)u_{xx}+c(x,t)u=f(x,t)$$ in the domain $Q=\{(x,t)\,:\,x\in(-1,0)\cup(0,1),\,t\in(0,T),\,0, where $p \geq 1$ is an integer, $D^k_t=\frac{\partial^k}{\partial t^k},$ and $D_t=\frac{\partial}{\partial t}$. The feature of such equations is that the coefficients $h(x)$ and $a(x)$ can have a discontinuity of the first kind when passing through the point $x = 0$. In addition to the usual Dirichlet boundary conditions, the problem under study also specifies the conjugation conditions on the line $x = 0$. Existence and uniqueness theorems are proved for regular solutions (those having all generalized Sobolev derivatives).
Keywords:
differential composite type equations, the Dirichlet problem, blow-up coefficient, regular solution, uniqueness.
Mots-clés : existence
Mots-clés : existence
@article{SVFU_2021_28_4_a1,
author = {A. I. Grigorieva},
title = {The dirichlet problem for the higher order composite type equations with discontinuous coefficients},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {17--29},
year = {2021},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_4_a1/}
}
TY - JOUR AU - A. I. Grigorieva TI - The dirichlet problem for the higher order composite type equations with discontinuous coefficients JO - Matematičeskie zametki SVFU PY - 2021 SP - 17 EP - 29 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/SVFU_2021_28_4_a1/ LA - ru ID - SVFU_2021_28_4_a1 ER -
A. I. Grigorieva. The dirichlet problem for the higher order composite type equations with discontinuous coefficients. Matematičeskie zametki SVFU, Tome 28 (2021) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/SVFU_2021_28_4_a1/