On some inverse problems for the Black–Scholes equation
Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 45-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the inverse problem of recovering the volatility coefficient depending on the spatial variable with given additional information in the form of conditions of partial final overdetermination. Existence and uniqueness theorems for solutions to this problem are proven, the numerical algorithm is developed, and the results of numerical experiments are presented.
Keywords: Black–Scholes equation, inverse problem, volatility coefficient.
@article{SVFU_2021_28_3_a3,
     author = {S. G. Pyatkov and D. S. Orlova},
     title = {On some inverse problems for the {Black{\textendash}Scholes} equation},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {45--69},
     year = {2021},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a3/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - D. S. Orlova
TI  - On some inverse problems for the Black–Scholes equation
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 45
EP  - 69
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a3/
LA  - ru
ID  - SVFU_2021_28_3_a3
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A D. S. Orlova
%T On some inverse problems for the Black–Scholes equation
%J Matematičeskie zametki SVFU
%D 2021
%P 45-69
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a3/
%G ru
%F SVFU_2021_28_3_a3
S. G. Pyatkov; D. S. Orlova. On some inverse problems for the Black–Scholes equation. Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 45-69. http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a3/