Stability of solutions to one class of nonlinear systems of delay difference equations
Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 31-44
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a class of nonlinear systems of delay difference equations with constant coefficients in linear terms. Conditions for the asymptotic stability of the zero solution are established and estimates characterizing stabilization rate of solutions at infinity are obtained by using a special Lyapunov–Krasovskii functional.
Keywords:
delay difference equations, asymptotic stability, Lyapunov–Krasovskii functional, estimates for solutions.
@article{SVFU_2021_28_3_a2,
author = {I. I. Matveeva and A. V. Khmil},
title = {Stability of solutions to one class of nonlinear systems of delay difference equations},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {31--44},
year = {2021},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/}
}
TY - JOUR AU - I. I. Matveeva AU - A. V. Khmil TI - Stability of solutions to one class of nonlinear systems of delay difference equations JO - Matematičeskie zametki SVFU PY - 2021 SP - 31 EP - 44 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/ LA - ru ID - SVFU_2021_28_3_a2 ER -
I. I. Matveeva; A. V. Khmil. Stability of solutions to one class of nonlinear systems of delay difference equations. Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 31-44. http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/