Stability of solutions to one class of nonlinear systems of delay difference equations
Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 31-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of nonlinear systems of delay difference equations with constant coefficients in linear terms. Conditions for the asymptotic stability of the zero solution are established and estimates characterizing stabilization rate of solutions at infinity are obtained by using a special Lyapunov–Krasovskii functional.
Keywords: delay difference equations, asymptotic stability, Lyapunov–Krasovskii functional, estimates for solutions.
@article{SVFU_2021_28_3_a2,
     author = {I. I. Matveeva and A. V. Khmil},
     title = {Stability of solutions to one class of nonlinear systems of delay difference equations},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {31--44},
     year = {2021},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/}
}
TY  - JOUR
AU  - I. I. Matveeva
AU  - A. V. Khmil
TI  - Stability of solutions to one class of nonlinear systems of delay difference equations
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 31
EP  - 44
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/
LA  - ru
ID  - SVFU_2021_28_3_a2
ER  - 
%0 Journal Article
%A I. I. Matveeva
%A A. V. Khmil
%T Stability of solutions to one class of nonlinear systems of delay difference equations
%J Matematičeskie zametki SVFU
%D 2021
%P 31-44
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/
%G ru
%F SVFU_2021_28_3_a2
I. I. Matveeva; A. V. Khmil. Stability of solutions to one class of nonlinear systems of delay difference equations. Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 31-44. http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a2/