Degeneration in differential equations with multiple characteristics
Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 19-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the solvability of boundary value problems for the differential equations $$ \varphi(t)u_t+(-1)^m\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t),\\ \varphi(t)u_{tt}+(-1)^{m+1}\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t), $$ where $x\in(0,1)$, $t\in(0,T),$ $m$ is a non-negative integer, $D^k_x=\frac{\partial^k}{\partial x^k}$ ($D^1_x=D_x$), while the functions $\varphi(t)$ and $\psi(t)$ are non-negative and vanish at some points of the segment $[0,T]$. We prove the existence and uniqueness theorems for the regular solutions, those having all generalized Sobolev derivatives required in the equation, in the inner subdomains.
Keywords: differential equations with multiple characteristics, degeneration, boundary value problem, regular solution, uniqueness.
Mots-clés : existence
@article{SVFU_2021_28_3_a1,
     author = {A. I. Kozhanov and G. A. Lukina},
     title = {Degeneration in differential equations with multiple characteristics},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {19--30},
     year = {2021},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a1/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - G. A. Lukina
TI  - Degeneration in differential equations with multiple characteristics
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 19
EP  - 30
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a1/
LA  - ru
ID  - SVFU_2021_28_3_a1
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A G. A. Lukina
%T Degeneration in differential equations with multiple characteristics
%J Matematičeskie zametki SVFU
%D 2021
%P 19-30
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a1/
%G ru
%F SVFU_2021_28_3_a1
A. I. Kozhanov; G. A. Lukina. Degeneration in differential equations with multiple characteristics. Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 19-30. http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a1/