Boundary value problems for the Rayleigh–Bishop equation in a quarter plane
Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 5-18
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider initial-boundary value problems for the Rayleigh–Bishop equation in a quarter plane. It is assumed that the initial-boundary value problems satisfy the Lopatinskii condition. A unique solvability in an anisotropic Sobolev space with an exponential weight is proved and an estimate for the solution is established.
Keywords:
pseudohyperbolic equation, Rayleigh–Bishop equation, initial-boundary value problem, Lopatinskii condition, Sobolev space.
@article{SVFU_2021_28_3_a0,
author = {G. V. Demidenko and A. A. Kudryavtsev},
title = {Boundary value problems for the {Rayleigh{\textendash}Bishop} equation in a quarter plane},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {5--18},
year = {2021},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a0/}
}
G. V. Demidenko; A. A. Kudryavtsev. Boundary value problems for the Rayleigh–Bishop equation in a quarter plane. Matematičeskie zametki SVFU, Tome 28 (2021) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/SVFU_2021_28_3_a0/