Multiscale model reduction for neutron diffusion equation
Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 111-120
Cet article a éte moissonné depuis la source Math-Net.Ru
Modelling of dynamic processes in nuclear reactors is carried out, mainly, on the basis of the multigroup diffusion approximation for the neutron flux. The neutron diffusion approximation is widely used for reactor analysis and applied in most engineering calculation codes. In this paper, we attempt to employ a model reduction technique based on the multiscale method for neutron diffusion equation. The proposed method is based on the use of a generalized multiscale finite element method. The main idea is to create multiscale basis functions that can be used to effectively solve on a coarse grid. From calculation results, we obtain that multiscale basis functions can properly take into account the small-scale characteristics of the medium and provide accurate solutions. The results calculated with the GMsFEM are compared with the reference fine-grid calculation results.
Keywords:
generalized multiscale finite element method (GMsFEM).
Mots-clés : parabolic equation, neutron diffusion, multiscale simulation
Mots-clés : parabolic equation, neutron diffusion, multiscale simulation
@article{SVFU_2021_28_2_a7,
author = {A. O. Vasilev and D. A. Spiridonov and A. V. Avvakumov},
title = {Multiscale model reduction for neutron diffusion equation},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {111--120},
year = {2021},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a7/}
}
TY - JOUR AU - A. O. Vasilev AU - D. A. Spiridonov AU - A. V. Avvakumov TI - Multiscale model reduction for neutron diffusion equation JO - Matematičeskie zametki SVFU PY - 2021 SP - 111 EP - 120 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a7/ LA - en ID - SVFU_2021_28_2_a7 ER -
A. O. Vasilev; D. A. Spiridonov; A. V. Avvakumov. Multiscale model reduction for neutron diffusion equation. Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 111-120. http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a7/