Distributed control for semilinear equations with Gerasimov–Caputo derivatives
Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 47-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the optimal control problem for semilinear evolution equations with lower fractional derivatives, resolved with respect to the higher fractional derivative, as well as having a degenerate linear operator at it. The nonlinear operator depends on the Gerasimov–Caputo fractional derivatives of lower orders. For the degenerate equation, a nonlinear operator is considered in two cases: if its image lies in the subspace without degeneration and if this operator depends only on the elements of the subspace without degeneration. It is shown that in the case when the solvability of the initial problem, for at least one admissible control, is obvious or can be shown directly, it is possible to prove the existence of an optimal control under a weaker condition of uniform in time local Lipschitz continuity with respect to the phase variables of the nonlinear operator, instead of the condition of its Lipschitz continuity. The theoretical results are applied to an optimal control problem for a system of partial differential equations with fractional time derivatives.
Keywords: fractional order differential equation, Gerasimov–Caputo fractional derivative, degenerate evolution equation, initial boundary value problem, optimal control problem, distributed control.
@article{SVFU_2021_28_2_a3,
     author = {M. V. Plekhanova and G. D. Baybulatova and B. T. Kien},
     title = {Distributed control for semilinear equations with {Gerasimov{\textendash}Caputo} derivatives},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {47--67},
     year = {2021},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a3/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
AU  - B. T. Kien
TI  - Distributed control for semilinear equations with Gerasimov–Caputo derivatives
JO  - Matematičeskie zametki SVFU
PY  - 2021
SP  - 47
EP  - 67
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a3/
LA  - ru
ID  - SVFU_2021_28_2_a3
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%A B. T. Kien
%T Distributed control for semilinear equations with Gerasimov–Caputo derivatives
%J Matematičeskie zametki SVFU
%D 2021
%P 47-67
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a3/
%G ru
%F SVFU_2021_28_2_a3
M. V. Plekhanova; G. D. Baybulatova; B. T. Kien. Distributed control for semilinear equations with Gerasimov–Caputo derivatives. Matematičeskie zametki SVFU, Tome 28 (2021) no. 2, pp. 47-67. http://geodesic.mathdoc.fr/item/SVFU_2021_28_2_a3/